

Practical Guide to

Oracle SQL,
T-SQL and MySQL

http://taylorandfrancis.com

A SCIENCE PUBLISHERS BOOK
p,

A SCIENCE PUBLISHERS BOOK
p,

Practical Guide to
Oracle SQL,
T-SQL and MySQL
Preston Zhang

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2017 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper
Version Date: 20170119

International Standard Book Number-13: 978-1-4987-4799-8 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the
validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the
copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to
publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let
us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted,
or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, includ-
ing photocopying, microfilming, and recording, or in any information storage or retrieval system, without written
permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com
(http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers,
MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety
of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment
has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data

Names: Liu, Jian (Chemical engineer), editor. | Jiang, San Ping, editor.
Title: Mesoporous materials for advanced energy storage and conversion
technologies / editors, Jian Liu, Department of Chemical Engineering,
Faculty of Science and Engineering, Curtin University, Perth, WA,
Australia, San Ping Jiang, Fuels and Energy Technology Institute &
Department of Chemical Engineering, Curtin University, Perth, WA,
Australia.
Description: Boca Raton, FL : CRC Press, Taylor & Francis Group, 2017. |
Series: A science publishers book | Includes bibliographical references
and index.
Identifiers: LCCN 2016042509| ISBN 9781498747998 (hardback : alk. paper) |
ISBN 9781498748018 (e-book)
Subjects: LCSH: Electric batteries--Materials. | Fuel cells--Materials. |
Solar cells--Materials. | Mesoporous materials.
Classification: LCC TK2901 .M47 2017 | DDC 621.31/24240284--dc23
LC record available at https://lccn.loc.gov/2016042509

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2017 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper
Version Date: 20170119

International Standard Book Number-13: 978-1-4987-4799-8 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the
validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the
copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to
publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let
us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted,
or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, includ-
ing photocopying, microfilming, and recording, or in any information storage or retrieval system, without written
permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com
(http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers,
MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety
of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment
has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data

Names: Liu, Jian (Chemical engineer), editor. | Jiang, San Ping, editor.
Title: Mesoporous materials for advanced energy storage and conversion
technologies / editors, Jian Liu, Department of Chemical Engineering,
Faculty of Science and Engineering, Curtin University, Perth, WA,
Australia, San Ping Jiang, Fuels and Energy Technology Institute &
Department of Chemical Engineering, Curtin University, Perth, WA,
Australia.
Description: Boca Raton, FL : CRC Press, Taylor & Francis Group, 2017. |
Series: A science publishers book | Includes bibliographical references
and index.
Identifiers: LCCN 2016042509| ISBN 9781498747998 (hardback : alk. paper) |
ISBN 9781498748018 (e-book)
Subjects: LCSH: Electric batteries--Materials. | Fuel cells--Materials. |
Solar cells--Materials. | Mesoporous materials.
Classification: LCC TK2901 .M47 2017 | DDC 621.31/24240284--dc23
LC record available at https://lccn.loc.gov/2016042509

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

20170908

2018

978-1-1381-0518-8

Library of Congress Cataloging-in-Publication Data

Names: Zhang, Preston, author.
Title: Practical guide to Oracle SQL, T-SQL and MySQL / Preston Zhang,

database administrator, University of Georgia, Watkinsville, Georgia, USA.
Description: Boca Raton : CRC Press, [2017] | "A science publishers book." |

Includes bibliographical references and index.
Identifiers: LCCN 2017040116 | ISBN 9781138105188 (hardback : alk. paper)
Subjects: LCSH: SQL (Computer program language) | Oracle (Computer file)
Classification: LCC QA76.73.S67 Z54 2017 | DDC 005.75/6--dc23
LC record available at https://lccn.loc.gov/2017040116

https://lccn.loc.gov/2017040116
http://www.crcpress.com
http://www.taylorandfrancis.com
http://www.copyright.com/
http://www.copyright.com

Preface

Databases are used everywhere. They effect on our daily lives widely. Online business
companies use databases to store critical data for their products and users; Doctor offices
use databases to keep patient, pharmacy and insurance information; Banks use databases
to track millions of financial transactions.
Relational database management systems (RDBMS) have become the standard database
type from 1980s. The most popular relational database management systems in the
world are Oracle, SQL Server and MySQL. To get data or manipulate data from database
systems developers and database administrators use Structured Query Language (SQL).
I have worked on Web applications using Oracle and MySQL databases on the backend.
In order to display important data I write SQL statements to access databases in php or
other development tools. I also use SQL to create databases or update database structures.
SQL is so powerful that I can process millions of records in few seconds.
As a database administrator I have been working on Oracle, SQL Server and MySQL
for decades. Although the basic SQL statements for Oracle SQL, SQL Server T-SQL and
MySQL are similar to each other, some functions and styles are quite different. I often
need to work with different database systems at the same time and it takes time for me to
check SQL syntax for the three database systems. There are a lot of SQL books available in
the market, but it is very hard to find a practical SQL book that comparing the differences
between the three major database systems. That’s why I want to write this reference book
with step by step examples in the real working environment.
I hope that this book can be a quick reference book for Oracle SQL, SQL Server T-SQL and
MySQL.

Why Learn SQL?

	 •	 SQL	is	one	of	the	most	desirable	programming	skills
	 •	 SQL	is	used	by	all	types	of	career	fields
	 •	 You	can	use	SQL	to	ask	questions	about	your	business
	 •	 You	can	get	useful	business	reports	from	SQL	statements
	 •	 You	can	manipulate	millions	of	records	in	seconds
	 •	 You	can	import	data	to	a	database
	 •	 You	can	export	data	from	a	database
	 •	 You	can	embed	SQL	statements	to	other	programming	languages

Who This Book Is For

This book is for beginning and intermediate SQL developers, database administrators,
database programmers and students. It starts from database concepts, installation of
database management systems, database creation and datatypes. It introduces basic and
advanced SQL syntax with side by side examples in Oracle SQL, T-SQL and MySQL. The
SQL code in this book is fully tested in Oracle 12c, SQL Server 2012 and MySQL 5.7.

How to Use This Book

To run the examples from this book you need to install the following database systems and
development tools:

 Oracle 11g or 12c
 Oracle SQL Developer
 SQL Server 2012 or above
 SQL Server Management Studio 2012 or above
 MySQL Server 5.7
 MySQL Workbench 6.3

All of the above software can be download from Oracle.com and Microsoft.com

Acknowledge

I wish to express appreciation to the Science Publisher editors who have been supporting
this book from the beginning and made this book a reality.
My deepest expression of gratefulness goes to my mom who has been learning for 30 years
after her retirement.

vi Preface

https://Oracle.com
https://Microsoft.com

Contents

Preface v

Chapter 1 Introduction to SQL and Relational Databases 1

Brief History of SQL and Relational Databases 2
SQL Standards 2
Oracle, SQL Server and MySQL Versions 3
Relational Database Basic Concepts 3
Constraints 7
Data Integrity 7
Types of Relationships 8

One-to-Many Relationships 8
Many-to-Many Relationships 9
One-to-One Relationships 9
Self-Referencing Relationships 9

Summary 10

Chapter 2 Data Types 11

Character Data Types 11
Number Data Types 12
Date and Time Data Types 13
Boolean Data Type 14
Summary 14

Chapter 3 Installation of Oracle, SQL Server and MySQL 15

Minimum System Requirements 15
Installation of Oracle 12c 16
Installation of SQL Server 2016 20
Installation of MySQL Server 5.7 26
Summary 32
Exercise 33

Chapter 4 Database Development Tools 34

Command Line Tools 34
Oracle SQL Plus 34
MySQL Command Line Client 36

Installation of Oracle SQL Developer 4.3 38
Installation of SQL Management Studio 2016 40
Installation of MySQL Workbench 6.3 43
Summary 46
Exercise 46

Chapter 5 Data Definition Language (DDL) 47

Data Definition Language Statements 47
Using SQL Commands to Create a Database 48
Using GUI Tools to Create a Database 49
Using SQL Commands to Create a Table 51
Using GUI Tools to Create a Table 54
Using Data from an Existing Table to Create a Table 56
Renaming a Table 58
Truncating a Table 61
Altering a Table 61

Summary 64
Exercises 64

Chapter 6 Data Manipulation Language (DML) 65

Data Manipulation Language Statements 65
INSERT INTO Statement 65
SELECT Statements 72
DISTINCT Clause 73
WHERE Clause 74
Arithmetic Operators 74
Order of Arithmetic Operators 76
Comparison Operators 76
AND Condition 77
OR Condition 77
IN Condition 78
BETWEEN Condition 79
IS NULL Condition 79
IS NOT NULL Condition 80
LIKE Condition 81
ORDER BY Clause 82
ALIASES 84
INSERT Multiple Records into an Existing Table 85
UPDATE Statement 86
DELETE Statement 86

Data Control Language 87
Summary 87
Exercises 87

Chapter 7 Aggregate Functions and GROUP BY Clause 89

Aggregate Functions 89
AVG () 90
COUNT () 90
MIN () 91
MAX () 92
SUM () 93

GROUP BY and HAVING Clause 94
GOUNP BY with AVG () Function 94
GROUP BY with COUNT () Function 95

viii Contents

GROUP	BY	with	HAVING	Example	 96
Summary 97
Exercises 97

Chapter 8 Functions 98

Common Number Functions 98
CEIL () 98
CEILING () 98
FLOOR () 99
GREATEST () 99
LEAST () 100
MOD () 100
POWER () 101
ROUND () 101
SQRT () 102
TRUNC () 102

Common String Functions 103
CONCAT () 104
FORMAT () 106
LEFT () 106
INITCAP () 106
LENGTH () 107
LEN () 107
LOWER () 108
LPAD () 108
LTRIM () 109
REPLACE () 109
RIGHT () 110
RPAD () 110
RTRIM () 111
SUBSTR () 111
SUBSTRING () 111
UPPER () 112

Common Date and time Functions 113
CURRENT_TIMESTAMP 113
ADD_MONTHS () 114
DATEADD () 114
DATE_ADD () 114
EXTRACT () 114
DATEPART () 114
CURRENT_DATE 115
GETDATE () 115
CURRENT_DATE () 115
MONTHS_BETWEEN () 115
DATEDIFF () 116
PERIOD_DIFF () 116
SYSDATE	 116
SYSDATETIME	()	 116
SYSDATE	()	 116

Contents ix

Conversion Functions 116
CAST () 117
TO_DATE 117
CONVERT () 118
STR_TO_DATE () 119

Summary 120
Exercises 121

Chapter 9 Advanced SQL 122

Advanced SQL Statements 123
Union 123
Union All 124
INTERSECT 124
EXCEPT 125
MINUS 125
ROWNUM 126
TOP 126
LIMIT 126
Subquery 128
CASE 130
SEQUENCE 132
IDENTITY	 132
AUTO_INCREMENT 132

Summary 136
Exercises 136

Chapter 10 Joins 137

INNER JOIN 137
JOIN with USING Clause 138
Joining with Multiple Tables 141
LEFT JOIN 142
RIGHT JOIN 142
FULL JOIN 142
Summary 144
Exercise 145

Chapter 11 Views 146

Creating Views in Oracle 146
Creating Views in T-SQL 149
Creating Views in MySQL 151
Updating Views 153
Summary 154
Exercise 154

Chapter 12 Data Import and Export 155

Oracle Data Export from Query Results 155
SQL Server Data Export from Query Results 157
MySQL Data Export from Query Results 159
Oracle Data Import Tool 161

x Contents

SQL Server Data Import Tool 166
MySQL Data Import Tool 171
Summary 174
Exercise 174

Chapter 13 Stored Procedures 175

Steps to Create an Oracle Stored Procedure 175
Steps to Create a SQL Server Stored Procedure 176
Steps to Create a MySQL Stored Procedure 177
A Stored Procedure with Parameters 178
Summary 182
Exercise 183

Index 185

About the Author 189

Contents xi

http://taylorandfrancis.com

Chapter 1

Introduction to SQL and
Relational Databases

Relational database management systems (RDBMS) have become the standard database
type for various industries since the 1980s. These systems allow the users to store data and
access data in graphic user interfaces. It also allows users to set security rules.
Structured Query Language (SQL) is a standard computer language for relational database
management systems. SQL has different dialects. For example, Oracle SQL is called
PL/SQL, MS SQL Server SQL is called T-SQL (Transact-SQL).
SQL is a very useful tool for database developers and database administrators. Database
developers use SQL to select, insert, and update data. Database administrators (DBAs)
apply their SQL skills to support Oracle, SQL Server, MySQL and other database systems.

The highlights of this chapter include

	 •	 Brief	History	of	SQL	and	Database	Systems
	 •	 SQL	Standards
	 •	 Oracle,	SQL	Server	and	MySQL	Versions
	 •	 Introduction	to	RDBMSs
	 •	 Relational	Database	Basic	Concepts
	 •	 Entity	Relational	Diagram	Used	in	This	Book

2 Chapter 1 Introduction to SQL and Relational Databases

Brief History of SQL and Database Systems

Table 1.1	 History	of	SQL	and	Database	Systems

Year SQL and Database Development

1970 to 1972 Dr.	E.F.	Codd	in	IBM	introduced	in	his	paper	the	term	“A	Relational	Model	of	Data	for	
Large Shared Data Banks”. In the paper he defined RDBMs by Codd’s 12 rules.

1970s Ingres	and	System	R	were	created	at	IBM	San	Jose.	System	R	used	the	SEQUEL	query	
language.	The	development	of	SQL/DS,	DB2,	and	Oracle	were	based	on	the	SEQUEL	
query	language.

1976 Dr. Peter Chen developed the entity-relationship model. This model becomes the
foundation of many systems analysis and design methods.

1980s Structured	Query	Language	became	the	standard	query	language.	Computer	sales	
increased rapidly. Relational database systems became a commercial success. IBM’s DB2
and IBM PC resulted in the launches of many new developments of database systems
such	as	PARADOX,	dBase	III	and	IV.

1990s Successful Online businesses let to demand for database accessing tools. MySQL and
Apache became open source solution for the Internet. Application development tools
including	Oracle	Developer,	Power	Builder,	and	Visual	Basic	were	released.

2000s The three leading relational database systems in the world are Oracle, Microsoft SQL
Server and MySQL.

SQL Standards

Table 1.2 SQL Standards

Year SQL Standard

1974 Original	SQL	(SEQUEL)

1986 SQL became a standard by ANSI (American National Standards Institute) and ISO
(International Standards Organization)

SQL/96 Major modification (ISO 9075)

SQL/99 Added	many	features	including	recursive	queries,	triggers,	procedural	and	control-of-flow	
statements, and some object-oriented structures

SQL/2003 Introduced XML-related features

SQL/2006 Defined ways for importing and storing XML data in database

SQL/2008 Added	TRUNCATE	TABLE	statement	and	INSTEAD	OF	triggers

Chapter 1 Introduction to SQL and Relational Databases 3

Oracle, SQL Server and MySQL Versions

Table 1.3 Different versions for the three database systems

Oracle SQL Server MySQL

1979–Oracle 2 1989–SQL Server 1.0 1995–First Release

1983–Oracle 3 1991–SQL Server 1.1 1996–MySQL 3.19

1984–Oracle 4 1993–SQL Server 4.21 1997–MySQL 3.20

1985–Oracle 5 1995–SQL Server 6.0 1998–MySQL 3.21

1988–Oracle 6 1996–SQL Server 6.5 2000–MySQL 3.23

1992–Oracle 7 1998–SQL Server 7.0 2002–MySQL 4.0

1997–Oracle 8 2000–SQL Server 2000 2003–MySQL 4.01

1998–Oracle 8i 2005–SQL Server 2005 2004–MySQL 4.1

2001–Oracle 9i 2008–SQL Server 2008 2005–MySQL 5.0

2003–Oracle 10g 2010–SQL Server 2008 R2 2010–MySQL 5.5

2007–Oracle 11g 2012–SQL Server 2012 2013–MySQL 5.6

2013–Oracle 12C 2014–SQL Server 2014 2015–MySQL 5.7

2016–SQL Server 2016 2016–MySQL 8.0

Relational Database Basic Concepts

▪ Databases

Relational Database Management System consists of one or more databases.
For	example,	the	following	SQL	Server	has	HR	and	Sample	databases.

Figure 1.1 Database examples

4 Chapter 1 Introduction to SQL and Relational Databases

▪ Entity

Entity	is	any	person,	place,	or	thing	that	the	data	can	represent	in	a	database	design.	For	
example,	Employees	and	Departments	are	entities.	Entities	are	converted	to	tables	at	the	
physical design stage.

▪ Data Type

SQL developers need to choose a data type for each column when creating a table. The
common	data	types	are	boolean,	integer,	float,	currency,	string,	date	and	time.

▪ DDL

DDL stands for Data Definition Language. DDL commands can be used to create, modify
database	structures.	Sample	DDL	commands	are	CREATE,	ALTER	and	DROP.

▪ DML

DML stands for Data Manipulation Language. DML commands can be used to insert
data into database tables, retrieve or modify data, deleting data in database. Sample DML
commands	are	INSERT,	DELETE	and	UPDATE.

▪ DCL

DCL stands for Data Control Language. DCL commands can be used to create rights and
permissions.	Sample	DCL	commands	are	GRANT	and	REVOKE.

▪ Query

SQL	developers	can	use	a	query	 to	get	data	or	 information	 from	one	or	more	database	
tables.

Attributes

Entity	has	 its	own	attributes.	For	 example,	 an	Employee	entity	may	have	name,	 email,	
phone and salary as attributes.

Types of Attributes

Simple attribute—An attribute that cannot be divided into subparts. For example, an
employee’s age is a simple attribute.

Composite attribute—An attribute that can be divided into simple attributes. For example,
an employee’s name has First_Name and Last_Name.

Derived attribute—An attribute whose value can be derived (calculated) from other
attribute. For example, Average_Age for employees can be calculated.

Chapter 1 Introduction to SQL and Relational Databases 5

Single-value attribute—An attribute contains a single value. For example, City or State.

Multi-value attribute—An attribute have more than one values. For example, an employee
can have more than one skills.

Tables

Each	database	contains	collection	of	tables.	
For	example,	the	HR	databases	has	country,	customer,	departments,	employees,	 job	and	
locations tables.

Figure 1.2 Table examples

▪ Fields (Columns)

Each	table	consists	of	smaller	entities	called	fields	or	columns.	
For example, The Country table has three fields (columns): Country_ID, Country_Name
and Region_ID.

6 Chapter 1 Introduction to SQL and Relational Databases

▪ Records (Rows)

Each	table	consists	of	one	or	more	records	(rows).
For	example,	the	COUNTRY	table	has	the	following	rows:

Figure 1.3 Record examples

Figure 1.4 Foreign key example

▪ Primary Key

Each	table	can	have	only	one	primary	key.
For	example,	the	COUNTRY	table	has	a	primary	key	COUNTRY_ID.

▪ Foreign Key

Database tables might be related by (foreign key) common column(s).
For example, Location_ID is the common column for Departments and Locations tables.

Chapter 1 Introduction to SQL and Relational Databases 7

▪ NULL

Null value is a field with no value. It is different with a zero value and it has been left blank
during record creation.

▪ Constraints

Constraints define rules to restrict what values can be stored in columns. This assurances
the correctness of the data in the database. For example, we can set a primary key for a
table so that there is no duplicated rows in the table.

Common Constraints

	 •	 NOT	NULL—A	column	does	not	accept	NULL	values.
	 •	 DEFAULT—Set a default value to a column when no value is specified to a column.
	 •	 UNIQUE—No duplicated values in a column.
	 •	 Primary	Key—A	column	or	a	combination	of	columns	that	uniquely	defines	a	row.	

The	primary	key	column	can	not	contain	a	NULL	value.	
	 •	 Foreign	Key—A foreign key in one table points to a candidate key in another table.
	 •	 CHECK—Check whether the value is valid or not.

▪ Data Integrity

	 •	 Entity	Integrity—No duplicate records in a table.
	 •	 Referential	Integrity—Referential integrity is violated when deleting a row that is

referenced by a foreign key in another table.

For example, a user can’t delete the Marketing department from the Departments table,
as there are two employees working for the Marketing department (#20). Deleting the
Marketing department violates the referential integrity rule. See the sample records below:

Figure 1.5 Sample data in Departments table

Figure 1.6 Sample	records	in	Employees	table

8 Chapter 1 Introduction to SQL and Relational Databases

Entity	Relational	Diagram	(ERD)	Used	in	This	Book	

Figure 1.7	 Simplified	Oracle	HR	Schema

Departments Locations

Jobs

Employees Country

Regions

department_id
department_name
manager_id_per_unit
location_id
Locations_location_id

street_address
postal_code

location_id

city
state_province
country_id

int
text
decimal(6,0)
decimal(4,0)
int

PK

FK

int PK
text
text
text
text
text FK

job_title
min_salary
max_salary

job_id int
text
int
int

PK

employee_id
first_name
last_name
email
phone_number
job_id
salary
manager_id
department_id
job_id
department_id

int
text
text
text
text
text

int
int
int
int

decimal(8,2)

PK

FK
FK

int
text
int
int

PK

FK

country_id
country_name
region_id
Regions_region_id

region_id
region_name

int
text

PK
Employees_employee_id int FK

Types	of	Relationships

	 •	 One-to-Many	Relationships
	 •	 Many-to-Many	Relationships
	 •	 One-to-One	Relationships
	 •	 Self-Referencing	Relationships

One-to-Many Relationships

One-to-Many Relationships define the situation when each row in the table_1 has many
linked rows in table_2. It is the most common type of relationship.

From	the	Entity	Relationship	diagram	we	can	see:

The relationship between the Employees and Departments is a one-to-many
relationship. The Dept_ID is the primary key in the Departments table and the foreign
key in the Employees	 table.	 One	 DEPARTMENT_ID	 can	 relate	 to	 many	 rows	 in	
the Employees table. One department can have one or many employees; an employee is
assigned to one department.
The relationship between the JOB and Employees	 is a one-to-many relationship. The
Job_ID is the primary key in the JOB table and the foreign key in the Employees table. One
Job_ID can relate to many rows in the Employees table. One job title can be used for one or
many employees; however, an employee only can have one job title.

Chapter 1 Introduction to SQL and Relational Databases 9

The relationship between the Locations and Departments is a one-to-many relationship.
The Location_ID is the primary key in the Locations table and the foreign key in
the Departments table. One Location_ID can relate to many rows in the Departments table.
One location can have one or many departments; a department only has one location.
The relationship between the Country and Locations is a one-to-many relationship. The
Country_ID is the primary key in the Country table and the foreign key in the Locations
table. One Country_ID can relate to many rows in the Locations table. One country can
have one or many locations (States or Provinces); a location (State or Province) only belongs
to one country.
The relationship between the Regions and Country is a one-to-many relationship. The
Region_ID is the primary key in the Regions table and the foreign key in the Country table.
One Region_ID can relate to many rows in the Country table. One region have one or
many countries; a country only belongs to one region.

Many-to-Many Relationships

A record in table_1 has many matching records in table_2, and a record in table_2 has many
matching records in table_1. For example, an employee may work on one or more projects,
and	each	project	may	have	one	or	more	employees.	 In	 this	case,	MANY	employees	are	
related	to	MANY	projects.
How	can	we	build	many-to-many	relationship	 in	a	database	system?	Suppose	we	have	
finished	two	tables:	Employees	table	and	Projects	table.	We	can	accomplish	many-to-many	
relationships by creating two one-to-many relationships and adding a link table between
the	 two	 tables.	For	example,	we	can	create	a	 table	“Emp_Project”	 that	has	a	 composite	
Primary	Key	that	consists	of	the	two	primary	keys	from	the	Employees	table	and	Projects	
tables. Thus, the two one-to-many relationships are:
	 1.	 From	Employees	table	to	Emp_Project	table:	One-to-Many	relationships.
	 2.	 From	Project	table	to	Emp_Project	table:	One-to-Many	relationships.

One-to-One Relationships

One-to-Many Relationships define the situation when one row in table_1 has one linked
row in table_2.
For	example,	every	person	has	a	social	security	number.	We	can	create	a	Person	table	with	
name,	address,	email,	phone	info	and	a	Person_2	table	with	social	security	number.	We	
link the two tables with a key.

Self-Referencing Relationships

A database model with a relationship to itself.
For	example,	Adam	(Employee_ID	101)	has	a	manager	(Manager_ID	109).	By	linking	the	
manager	ID	109	to	Employee_ID	109	we	know	Adam’s	manager	is	Lex	De	Hann.

10 Chapter 1 Introduction to SQL and Relational Databases

Summary

Chapter 1 covers the following:

	 •	 Introduction	to	the	brief	history	of	SQL	and	relational	databases.	
	 •	 Introduction	to	SQL	standards.
	 •	 The	basic	terms	of	relational	database	management	systems.	
	 •	 Introduction	to	Oracle,	SQL	Server	and	MySQL	versions.
	 •	 Displaying	sample	entity	relationship	diagram	that	used	in	this	book.
	 •	 Defining	one-to-one	relationships.
	 •	 Defining	one-to-many	relationships.	
	 •	 Defining	many-to-many	relationships.
	 •	 Defining	self-referencing	relationships.	

Figure 1.8 Self-referencing example

Chapter 2

Data Types

You have learned in Chapter 1 that tables are consisted of many columns. When you design
or modify databases it is very important to understand the different data types. There are
three main data types: Characters, Numbers, and Date/Time.

Character Data Types

Table 2.1 Characters data types for the three database systems

Data Type Oracle SQL SQL SERVER MySQL

Fixed-length
Character

CHAR(n)
Hold up to 2,000 characters

CHAR(n)
 Hold up to 8,000 characters

CHAR(n)
Hold up to 255 characters

NCHAR
for any language

NCHAR(n)
Hold up to 2,000 characters

NCHAR
Hold up to 4,000 characters

NCHAR(n)
Hold up to 65,535 characters

variable-length
character strings

VARCHAR2(n)

Hold up to 4,000 characters

VARCHAR(n)
Hold up to 8,000 characters
VARCHAR(max)
Hold up to 1,073 million characters

VARCHAR(n)

Hold up to 255 characters

NVARCHAR2(n)
for any language

NVARCHAR2(n)

Hold up to 4,000 characters

NVARCHAR
Hold up to 4,000 characters
NVARCHAR(max)
Hold up to 536 million characters

NVARCHAR(n)

Hold up to 65,535 characters

TINYTEXT
Hold up to 255 characters

NTEXT
for any language

LONG
Variable width
Hold up to 2 GB characters

TEXT
NTEXT
Hold up to 4,000 characters

TEXT

Hold up to 65,535 characters

RAW(n)
Binary date
Hold up to 2,000 bytes

BINARY(n)
Fixed width binary date
Hold up to 8,000 bytes

MEDIUMTEXT
Hold up to 16 million
characters

Character Large
Object
NCLOB
for any language

CLOB
NCLOB
Hold up to 4G characters

VARBINARY
Variable width binary date
Hold up to 8,000 bytes

LONGTEXT

4G bytes

Binary Large
Object

BLOB
Hold up to 4G characters

VARBINARY(max)
Variable width; Hold up to 2 GB

LONGBLOB
Hold up to 4,294 million
characters

IMAGE
Variable width; Hold up to 2 GB

ENUM(a, b, c, …)
List up to 65,535 values

SET
List up to 64 values

12 Chapter 2 Data Types

What is the difference between fixed-length characters and variable-length characters?
Fixed-length characters—When you create a fixed size field, like phone numbers, SSN,
State, CHAR data type is a good choice.
Variable-length characters—Many fields have variable-length characters. When you create
VARCHAR(30) or VARCHAR2(30) for first name field, for example, as first name length is
different for each person you need to use VARCHAR or VARCHAR2 type. If a first name
is “Peter”, only 5 characters are stored in a table (5 bytes), not 30. If we use CHAR(30) for
a first name field, than all the first names will be stored in 30 characters. Obviously, it will
waste a lot of storage spaces.

Number Data Types

Table 2.2 Number data types for the three database systems

Data Type Oracle SQL SQL SERVER MySQL

Small Integer NUMBER (3)

0 to 255

TINYINT

0 to 255

TINYINT (n)
–128 to 127
0 to 255 UNSIGNED

Median Integer NUMBER (5) SMALLINT
–32,768 to 32767

SMALLINT (n)
–32,768 to 32767
0 to 65,535 UNSIGNED

MEDIUMINT (n)
–8,388,608 to 8,388,608
0 to 16,772,215 UNSIGNED

Integer 32 bit NUMBER (10) INT
–2,147,483,648 to –2,147,483,647

INT (n)
–2,147,483,648 to –2,147,483,647
UNSIGNED

NUMBER (38) BIGINT
–9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

BIGINT (n)
–9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

REAL

Floating number
–3.40E + 38 to 3.40E + 38

FLOAT (n, d)
Small floating number
n—maximum of digits
d—decimal points

SMALLMONEY
–214,748.3648 to 214,748.3647
MONEY
–922,337,203,685,477.5808 to
922,337,203,685,477.5807

DOUBLE (n, d)
Large floating number
n—maximum of digits
d—decimal points

NUMBER (p, s)
NUMERIC (p, s)

p from 1 – 38
s from –84 to 127

DECIMAL (p, s)
NUMERIC (p, s)
–10^38 + 1 to 10^38 – 1
p from 1 – 38
s from –84 to 127

DECIMAL (n, d)

Stored as a string
n—maximum of digits
d—decimal points

 Chapter 2 Data Types 13

NUMBER (p, s) (Oracle)

NUMERIC (p, s) (Oracle)
 p—precision
 s—scale
For example, NUMERIC (5, 2) including 3 digits before the decimal and 2 digits after the
decimal.

DECIMAL (p, s) (T-SQL)

NUMERIC (p, s) (T-SQL)
 p—the maximum number of digits that can be stored (including all the digits

from on the left and right of decimal point).
 s—the maximum number of digits that can be stored to the right of the decimal

point.

Oracle Number Example

Datatype Input Data Stored Value
NUMBER 634,782.59 634782.59
NUMBER (8) 634,782.59 634783
NUMBER (8, 2) 634,782.59 634782.59
NUMBER (8, 1) 634,782.59 634782.5

Date and Time Data Types

Table 2.3 Date and time data types for the three database systems

Oracle SQL SQL SERVER MySQL

DATE
Format: DD-MON-YY
Example: 25-JAN-2017

DATE
Format: YYYY-MM-DD
Example: 2017-01-25

DATE
Format: YYYY-MM-DD
Example: 2017-01-25

TIMESTAMP (0)

If we don’t specify a precision
then the timestamp defaults to
six places.

SMALLDATETIME
Format: YYYY-MM-DD HH:MI:SS

DATETIME
Format: YYYY-MM-DD HH:MI:SS
[.mmm]

DATETIME ()

Format: YYYY-MM-DD HH:MI:SS

TIME
HH:MI:SS.0000000

TIME (p)
Format: HH:MI:SS

TIMESTAMP (3)
DD-MM-YY HH:MI:SS

TIMESTAMP
Format: YYYY-MM-DD HH:MI:SS

TIMESTAMP
Format: YYYY-MM-DD HH:MI:SS

YEAR ()
Format: YY (70 to 69) 1970 to 2069
YYYY: 1901 to 2155

14 Chapter 2 Data Types

Boolean Data Type

Summary

Chapter 2 covers several data types for the three database systems.

	 •	 Character	data	types
	 •	 Number	data	types
	 •	 Date	and	time	data	types	in	the	three	database	systems
	 •	 Boolean	data	type

Although this chapter is short but it takes time to get familiar with all those date types.
When you study Chapter 5 ‘‘Creating Databases and Tables’’ you will use different data
types for columns.
In the next chapter we will install Oracle 12c, SQL Server 2016 and MySQL 5.7 database
systems.

Table 2.4 Boolean data types for the three database systems

Data Type Oracle SQL SQL SERVER MySQL

Boolean CHAR(1) (0 or 1) BIT
0, 1 and NULL

BOOLEAN, BOOL
0 or 1; Not NULL

Chapter 3

 Installation of Oracle, SQL
Server and MySQL

Before we run SQL commands we need to install relational database management systems.
This chapter covers how to install Oracle 12c, SQL Server 2016 and MySQL 5.7.

Minimum System Requirements

Table 3.1 System requirements

Oracle 12C SQL Server 2016 MySQL 5.7

Hard Disk: 10 GB

RAM: 2 GB
1 GB of space in the tmp directory.

Operating System
32-bit:
Windows 8 (Pro and Enterprise editions)
Windows 7 (Professional, Enterprise,
Ultimate editions)
Windows Server 2008

64-bit:
Windows 8 (Pro and Enterprise
editions)
Windows 7 (Professional, Enterprise,
Ultimate editions)
Windows Server 2012
Windows Server 2008 R2
Windows Server 2008

Linux

Hard Disk: 6 GB
A DVD drive is required for
installation from disc.
.NET Framework 4.6

Recommended RAM
Express Editions: 1 GB
All other editions: At least 4 GB
Processor: x64 Processor
Operating System
SQL Server Enterprise

Windows Server 2016
Windows Server 2012

SQL Server Standard
Windows Server 2016
Windows Server 2012
Windows 10
Windows 8.1

SQL Server Web and Express:
Windows Server 2016
Windows Server 2012

SQL Server Developer:
Windows Server 2016
Windows Server 2012
Windows 10
Windows 8.1
Windows 8

Hard Disk: 8 GB

RAM: 2 GB

Operating System

Windows 32-bit and 64-bit

Linux
Mac OS X

16 Chapter 3 Installation of Oracle, SQL Server and MySQL

Installation of Oracle 12c

	 •	 Download	Oracle	Database	12c Release 2 from the Oracle Web site:
 http://www.oracle.com/technetwork/database/enterprise-edition/downloads/

database12c-win64-download-2297732.html

Figure 3.1 Oracle 12c downloads

	 •	 After	downloading	and	decompressing	Windows	x64	files,	make	sure	that	two	folders	
are at the same location:

Figure 3.2	 Downloaded	files

http://www.oracle.com/technetwork/database/enterprise-edition/downloads/database12c-win64-download-2297732.html
http://www.oracle.com/technetwork/database/enterprise-edition/downloads/database12c-win64-download-2297732.html

Chapter 3 Installation of Oracle, SQL Server and MySQL 17

	 •	 There	are	extra	steps	for	Windows	7	PCs:
 1. Open the winx64_12c_database_2of2 directory
	 2.	 Copy	all	the	files	under\winx64_12c_database_2of2\database\stage\Components	

directory
	 3.	 Paste	all	the	files	to\winx64_12c_database_1of2\database\stage\Components

	 •	 Go	to\winx64_12102_database_1of	2	and	run	the	setup.exe	file:

Figure 3.3	 Running	setup	file

	 •	 Choose	the	languages:

Figure 3.4 Choosing a language

18 Chapter 3 Installation of Oracle, SQL Server and MySQL

	 •	 Select	the	database	edition:

Figure 3.5 Selecting a database edition

	 •	 Choose	“Use Windows Built-in Account”:

Figure 3.6 Windows built-in account

Chapter 3 Installation of Oracle, SQL Server and MySQL 19

	 •	 Click	“Yes” for the following warning message:

Figure 3.7 Warning message

	 •	 Choose	Installation	Location:

Figure 3.8 Installation location

20 Chapter 3 Installation of Oracle, SQL Server and MySQL

	 •	 After	the	installation	you	can	install	Oracle	SQL	Developer.	The	step	by	step	instructions	
is in the next chapter.

Installation of SQL Server 2016

The SQL Server 2016 Installation is straightforward. Every installation creates one SQL
Server instance on your computer.
	 •	 Go	to	SQL	Server	2016	Developer	Edition	download	page:
 https://www.microsoft.com/en-us/sql-server/application-development
	 •	 Download	SQL	Server	2016	Developer	(x64).

	 •	 After	summary	page	click	“Next” to install Oracle 12c:

Figure 3.9 Summary

Figure 3.10 SQL Server 2016 downloads

https://www.microsoft.com/en-us/sql-server/application-development

Chapter 3 Installation of Oracle, SQL Server and MySQL 21

	 •	 Click	setup.exe	to	run	the	installation	file.

Figure 3.11	 Running	setup	file

	 •	 Select	Developer edition.

Figure 3.12 Selecting developer edition

22 Chapter 3 Installation of Oracle, SQL Server and MySQL

	 •	 Select	Features:

Figure 3.14 Selecting features

	 •	 Accept	the	license	terms.

Figure 3.13 Accepting the license terms

Chapter 3 Installation of Oracle, SQL Server and MySQL 23

	 •	 SQL	 Server	 issues	 a	 default	 instance	 name:	 SQL	 2016.	 Any	 previously	 installed	
instances will be displayed here.

Figure 3.15 Default instance name

24 Chapter 3 Installation of Oracle, SQL Server and MySQL

	 •	 Click	“Add Current User” to set up an administrator:

Figure 3.16 Setting up an administrator

Chapter 3 Installation of Oracle, SQL Server and MySQL 25

	 •	 Click	Next button then click Install button.

Figure 3.17 Summary

26 Chapter 3 Installation of Oracle, SQL Server and MySQL

	 •	 Installation	is	completed.

Figure 3.18 Installation is done.

	 •	 After	the	installation	you	can	install	SQL	Server	Management	Studio.	The	step	by	step	
instructions is in the next chapter.

Installation of MySQL

	 •	 Go	to	MySQL	installer	page:	https://dev.mysql.com/downloads/installer/

https://dev.mysql.com/downloads/installer/

Chapter 3 Installation of Oracle, SQL Server and MySQL 27

Figure 3.19 MySQL downloads

	 •	 Choose	MySQL Enterprise Edition or Standard Edition.

Figure 3.20 Choosing edition to download

28 Chapter 3 Installation of Oracle, SQL Server and MySQL

	 •	 Accept	the	license	terms.

Figure 3.22 Accepting the license terms

	 •	 Select	MySQL Standard Edition for Microsoft Windows x64 (64-bit).

Figure 3.21 Selected program

Chapter 3 Installation of Oracle, SQL Server and MySQL 29

	 •	 If	you	do	not	use	Oracle	Support	select	‘No’.

Figure 3.23 Choosing the support option

	 •	 You	can	select	MySQL	documentation	and	samples:

Figure 3.24 Selecting documents or samples

30 Chapter 3 Installation of Oracle, SQL Server and MySQL

	 •	 Installation	is	ready	to	go.

Figure 3.25 Installation is ready

	 •	 Keep	default	Server	Configuration	Setting:

Figure 3.26	 Default	server	configuration

Chapter 3 Installation of Oracle, SQL Server and MySQL 31

	 •	 Enter	 root	 account	password.	Please	 remember	 this	password	 as	 you	will	 use	 it	 to	
login	to	MySQL	server.	If	you	want	to	add	users	you	can	click	“Add User” button.

Figure 3.27 Entering account password

32 Chapter 3 Installation of Oracle, SQL Server and MySQL

Figure 3.28 Testing the password

	 •	 Enter	the	password	and	click	“Check” button to see if it is working.

	 •	 After	the	installation	you	can	install	MySQL	Workbench.	The	step	by	step	instructions	
is in the next chapter.

Summary

Chapter 3 covers the following:

	 •	 Minimum	System	Requirements
	 •	 How	to	install	Oracle	12c
	 •	 How	to	install	SQL	Server	2016
	 •	 How	to	install	MySQL	5.7

In the next chapter you are going to install development tools for the three database
systems.

Chapter 3 Installation of Oracle, SQL Server and MySQL 33

Exercise

3.1

Install Oracle 12c or SQL Server 2016 or MySQL 5.7 on your computer following the
instructions in this chapter. If you want to test SQL statements for the three database
systems then install them all on your computer.

Chapter 4

 Database Development Tools

There are many database development tools available: Command line tools and graphic
user interface tools. Command Line Tools including Oracle SQL Plus and MySQL
Command Line Client. Graphic User Interface Tools include Oracle SQL Developer, SQL
Server Management Studio and MySQL Workbench.

Command Line Tools

Oracle SQL Plus

	 •	 Go	to	Start	->	Oracle-OraDB12Home1	->	SQL	Plus

Figure 4.1 Starting SQL Plus

Chapter 4 Database Development Tools 35

	 •	 To	access	a	built-in	database	HR	enter	the	username	and	password	of	the	HR	schema.	
	 	 	 Enter	user-name:	hr

	 	 	 Enter	password:	xx	(you	can	reset	the	password	if	you	forgot	it)

Figure 4.2 SQL Prompt

	 •	 Enter	“EXIT” to leave the SQL prompt.

	 •	 To	see	the	structure	of	the	Employees	table	enter:
	 	 	 DESCRIBE	Employees;

Figure 4.3 Testing a SQL statement

36 Chapter 4 Database Development Tools

MySQL Command Line Client

	 •	 Go	to	Start	->	MySQL	->	MySQL	5.7	Command	Line	Client	
	 	 (The	second	MySQL	5.7	Command	Line	Client	is	for	Unicode)

Figure 4.4 Starting MySQL Command Line Client

	 •	 Enter	MySQL	root	password	(You	setup	a	password	when	you	install	the	MySQL	5.7)

Figure 4.5 MySQL prompt

Chapter 4 Database Development Tools 37

	 •	 Another	way	to	start	MySQL	prompt:
	 	 	 type	C:\Program	Files\MySQL\MySQL	Server	5.7\bin\mysql	–u	root	–p

Figure 4.6	 Displaying	MySQL	prompt	in	other	way

	 •	 Enter	“SHOW databases” at the MySQL prompt.

Figure 4.7 Testing a SQL statement

38 Chapter 4 Database Development Tools

Graphic User Interface Tools

Installation of Oracle SQL Developer

	 •	 Download	Oracle	SQL	Developer	at	the	following	link:
	 	 http://www.oracle.com/technetwork/developer-tools/sql-developer/downloads/
 index.html
	 •	 Starts	Oracle	SQL	Developer:

Figure 4.8 Starting Oracle SQL Developer

http://www.oracle.com/technetwork/developer-tools/sql-developer/downloads/index.html
http://www.oracle.com/technetwork/developer-tools/sql-developer/downloads/index.html

Chapter 4 Database Development Tools 39

	 •	 Oracle	has	many	build-in	schemas.	Here	we	use	Oracle	build-in	HR	schema	to	make	a	
connection:

Figure 4.9	 Entering	username	and	password

	 •	 Enter	password	then	click	OK button.
	 •	 SQL	Developer	opens	Connections	pane	on	the	left	and	SQL	worksheet	on	the	right.

Figure 4.10 Connection pane

40 Chapter 4 Database Development Tools

Installation of SQL Server Management Studio

	 •	 From	SQL	Server	2016	the	server	and	the	management	studio	are	installed	separated.
	 •	 Go	to	SQL	Server	2016	Management	Studio	download	page:
	 	 https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-

studio-ssms

	 •	 Enter	 “DESCRIBE Employees;”	 on	 the	Worksheet	 then	 click	 the	Run Statements
button	(the	green	triangle).	You	can	see	that	we	get	the	same	result	as	the	SQL	Plus	
command line.

Figure 4.11	 Testing	a	SQL	statement	in	query	worksheet

https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms

Chapter 4 Database Development Tools 41

Figure 4.12	 SQL	Server	Management	Studio	downloads

	 •	 After	the	download	start	the setup.exe file.

Figure 4.13 Starting setup file

42	 Chapter 4 Database Development Tools

	 •	 When	the	installation	is	done	let	us	start	SQL	Server	Management	Studio:

Figure 4.14 Starting SQL Server Management Studio

Figure 4.15 Master database

	 •	 Check	 the	 Server	 Name	 then	 click	Connect button. The SQL Server Management
Studio	 has	 Object	 Explorer	 pane	 on	 the	 left.	 You	 can	 navigate	 through	 databases,	
tables, columns, or other types of objects. Click New Query	 button	 to	 enter	 query	
statements.

Chapter 4 Database Development Tools 43

	 •	 The	“Master”	database	will	be	selected	by	default.	Make	sure	to	select	a	database	that	
you	are	working	on.	Or	you	can	type	“Use database_name;”	command	on	the	SQL	
worksheet	before	a	query	statement.	To	run	a	query	click	“! Execute” button.

Installation of MySQL Workbench

	 •	 Download	MySQL	Workbench	at:
	 	 https://dev.mysql.com/downloads/workbench/

Figure 4.16	 MySQL	Workbench	downloads

	 •	 After	the	installation	MySQL	Workbench	starts:

Figure 4.17 Starting MySQL Workbench

https://dev.mysql.com/downloads/workbench/

44 Chapter 4 Database Development Tools

	 •	 Click	“Local instance MySQL 57’’	and	enter	the	password	(You	setup	the	password	
when	you	install	MySQL).	You	are	now	ready	to	use	MySQL	Workbench.

Figure 4.18	 Navigation	pane

Chapter 4 Database Development Tools 45

	 •	 Click	the	arrow	icon	on	the	right	side	of	SCHEMAS	to	move	the	SCHEMAS	to	the	top	
of	Navigator	pane:

Figure 4.19 Displaying Schemas

Figure 4.20 Testing a SQL statement

	 •	 To	open	a	SQL	worksheet	click	“Create a new SQL tab for executing queries” above
the	Navigator	pane.	

	 •	 Enter	“SHOW databases;”	command	and	click	the	Literning	icon	to	run	the	query.

46 Chapter 4 Database Development Tools

Summary

Chapter	4	covers	the	following:

	 •	 Introduction	to	SQL	Plus
	 •	 Introduction	to	MySQL	Command	Line	Client
	 •	 Installation	of	Oracle	SQL	Developer
	 •	 Installation	of	SQL	Server	Management	Studio
	 •	 Installation	of	MySQL	Workbench

Now	you	are	ready	to	create	databases	and	tables	in	the	next	chapter.

Exercises

4.1

Install Oracle SQL Developer, SQL Server Management Studio and MySQL Workbench
on	your	computer	based	on	your	need.	 If	you	want	 to	 test	SQL	statements	 in	 the	 three	
database systems then install them all on your computer. Test each tool by running a SQL
command.

4.2

View	the	databases	and	tables	in	Oracle	SQL	Developer,	SQL	Server	Management	Studio	
and MySQL Workbench.

Chapter 5

 Data Definition Language (DDL)

We have installed the database systems and development tools in Chapter 3 and
Chapter 4. Now we are ready to create databases and tables.

SQL statements are divided into three main groups:

	 •	 Data	Definition	Language	(DDL)	
	 •	 Data	Manipulation	Language	(DML)	
	 •	 Data	Control	Language	(DCL)	

Below	is	the	statement	summary	for	DDL,	DML	and	DCL.

Table 5.1	 DDL,	DML	and	DCL

Language Statements

Data Definition Language (DDL)
CREATE – To Create objects in the database
DROP – To delete objects from the database
ALTER – To change database structure
RENAME – To rename a database object
TRUNCATE – To remove all records from a table

Data Manipulation Language (DML)

SELECT – To retrieve data from a database
INSERT INTO – To insert data into a table
UPDATE… SET – To update data in a table
DELETE FROM – To deletes all rows from a table

Data Control Language (DCL) GRANT – To grant privileges to a user
REVOKE – To revoke privileges from a user

We	cover	Data	Definition	Language	(DDL)	in	this	chapter.	Data	Manipulation	Language	
(DML)	and	Data	Control	Language	(DCL)	will	be	discussed	in	the	next	chapter.

Data Definition Language Statements

Creating a Database

We can create a database in two ways:

 1. Using SQL Command
 2. Using Graphic User Interface (GUI) Tools

48 Chapter 5 Data Definition Language (DDL)

1. Using SQL Commands to Create a Database

Syntax

 CREATE DATABASE Database_Name;

Steps to Create a Database in Oracle:

 1. Login to Oracle SQL Plus as system user
 2. At the sql prompt enter:

 sql> CREATE USER TEST_DB IDENTIFIED BY pw;

Note: An Oracle’s user name acts as database name. We created a user “TEST_DB” with
password “pw”.

 3. Grant privileges to the user.

 Sql> GRANT CONNECT, DBA TO TEST_DB;

 4. Create all the objects like tables under the user.

Steps to Create a Database in SQL Server:

	 1.	 In	the	SQL	Management	Studio	query	worksheet	enter:	

 CREATE DATABASE TEST_DB;

 2. Run the query and refresh Connect pane.
 3. The TEST_DB database is created in the Connect pane.

Steps to Create a Database in MySQL:

	 1.	 In	the	MySQL	Workbench	query	worksheet	enter:	

 CREATE DATABASE TEST_DB;

Figure 5.1 Creating a database in SQL Server

Chapter 5 Data Definition Language (DDL) 49

Creating a Database in GUI (SQL Server)

	 •	 Right	click	Database and enter Database Name: Car
	 •	 Click	OK

2. Using GUI Tools to Create a Database

Creating a Database in GUI (Oracle)

	 •	 Using	Database Configuration Assistant to create a database after installation.

Figure 5.3 Database Configuration Assistant

Figure 5.2	 Creating	a	database	in	MySQL

 2. Run the query and refresh SCHEMAS.
 3. The test_db database is created in the Navigator pane.

50 Chapter 5 Data Definition Language (DDL)

Figure 5.4 Creating a database in GUI (SQL Server)

Figure 5.5 The database “CAR” is created

Creating a Database in GUI (MySQL)

	 •	 Right	click	any	schema	and	choose	Create Schema

Figure 5.6 Creating	a	database	in	GUI	(MySQL)

Chapter 5 Data Definition Language (DDL) 51

Table 5.2 Dropping database

Oracle T-SQL MySQL

DROP USER TEST_DB; DROP DATABASE HR;
Command(s) completed successfully.

DROP DATABASE hr;
0 row(s) affected.

Dropping a Database

Description: Deletes a Database. Be careful to drop database or drop table. If you do not
backup your database you may lose important data!

Syntax (Oracle)

 DROP USER User_Name;

Syntax (T-SQL	&	MySQL)

 DROP DATABASE Database_Name;

	 •	 Enter schema name ‘hr’ and click Apply

Creating a Table

We can create tables in two ways too:
 1. Using SQL Command
 2. Using Graphic User Interface Tools

Note:
	 •	 All	the	Oracle	tables	in	this	book	are	created	in	a	user	account.
	 •	 All	the	T-SQL	tables	are	created	in	HR	database.
	 •	 All	the	MySQL	tables	are	created	in	hr	schema	(database).

1. Using SQL Commands to Create a Table

Syntax

 CREATE TABLE Table_Name;

Figure 5.7 Entering a database (schema) name

52 Chapter 5 Data Definition Language (DDL)

Creating Country Table

Table 5.4 Creating Country table commands

Oracle SQL T-SQL & MySQL

CREATE TABLE Country
(
Country_id	 	 	 	CHAR	(2)	NOT	NULL,
Country_name	 	VARCHAR2(40),	
Region_id	 	 	 	 	 NUMBER,	
PRIMARY KEY (country_ID),
CONSTRAINT	 FK_RegCountry
FOREIGN KEY (region_id)
REFERENCES Regions (Regins_ID)

);

CREATE TABLE Country
(
country_id	 	 	 	CHAR	(2)	NOT	NULL,
country_name	 	VARCHAR(40),	
region_id smallint,
PRIMARY KEY (country_ID),
CONSTRAINT	 FK_RegCountry
FOREIGN KEY (region_id)
REFERENCES Regions (Regins_ID)

);

Creating Departments Table

Table 5.5 Creating Departments table commands

Oracle SQL T-SQL & MySQL

CREATE TABLE Departments
(
Dept_id	 	 	 		NUMBER	(4)	NOT	NULL,
Dept_name	 		VARCHAR2	(30),	
Manager_id	 	NUMBER	(6),
Location_id	 	NUMBER	(4),	
PRIMARY KEY (dept_ID),
CONSTRAINT	 FK_LocDept
FOREIGN KEY (location_id)
REFERENCES Locations (location_ID)

);

CREATE TABLE Departments
(
dept_id	 	 	 		NUMBER	(4)	NOT	NULL,
dept_name	 		VARCHAR	(30),	
manager_id	 	NUMBER	(6),
location_id	 		 NUMBER	(4),	
PRIMARY KEY (dept_ID),
CONSTRAINT	 FK_LocDept
FOREIGN KEY (location_id)
REFERENCES Locations (location_ID)

);

Table 5.3 Creating Regions table commands

Oracle SQL T-SQL & MySQL

CREATE TABLE Regions
(
Region_id	 	 	 NUMBER	NOT	NULL,
Region_name	 VARCHAR2(25),	
PRIMARY KEY (Regions_ID)

);

CREATE TABLE regions
(
region_id	 	 	 NUMBER	NOT	NULL,
region_name	 VARCHAR(25),
PRIMARY KEY (Regions_ID)

);

Creating Regions Table

Chapter 5 Data Definition Language (DDL) 53

Creating Locations Table

Table 5.7 Creating Locations table commands

Oracle SQL T-SQL & MySQL

CREATE TABLE Locations
(
Location_id	 		 			NUMBER	(4)	NOT	NULL,
Street_address	 			VARCHAR2(40),
Postal_code	 		 			VARCHAR2(12),
City	 		 		 		 		 		VARCHAR2(30),
State_province	 			VARCHAR2(25),
Country_id	 		 				CHAR(2),
PRIMARY KEY (Location_ID),
CONSTRAINT	 FK_CountryLoc
FOREIGN KEY (country_id)
REFERENCES country (country_ID)

);

CREATE TABLE Locations
(
location_id	 		 			NUMBER	(4)	NOT	NULL,
street_address	 		VARCHAR(40),
postal_code	 		 	VARCHAR(12),
city	 		 		 		 		 	VARCHAR(30),
state_province	 		VARCHAR(25),
country_id	 		 				CHAR(2),
PRIMARY KEY (Location_ID),
CONSTRAINT	 FK_CountryLoc
FOREIGN KEY (country_id)
REFERENCES country (country_ID)

);

Creating Job Table
Table 5.8 Creating Job table commands

Oracle SQL T-SQL & MySQL

CREATE TABLE Job
(
Job_id	 	 	 	VARCHAR2	(10)	NOT	NULL,
Job_title	 		 	VARCHAR2	(35),
Min_salary	 	NUMBER	(6),
Max_salary	 NUMBER	(6),
PRIMARY KEY (job_ID)

);

CREATE TABLE Job
(
job_id	 	 	 	VARCHAR	(10)	NOT	NULL,
job_title	 		 	VARCHAR	(35),
min_salary	 	NUMBER	(6),
max_salary	 NUMBER	(6),
PRIMARY KEY (job_ID)

);

Creating Employees Table

Table 5.6 Creating Employees table commands

Oracle SQL T-SQL & MySQL

CREATE TABLE Employees
(
Employee_ID	 	NUMBER(6)	NOT	NULL,
	First_NAME	 	VARCHAR2(20)	,
	Last_Name	 	 		VARCHAR2(25),
	Email	 	 	 	 		VARCHAR2(25),
	Phone	 	 	 	 	VARCHAR2(20),
	Hire_Date	 	 		DATE,
	Job_ID	 	 	 	 		VARCHAR2(10),
	Salary	 	 	 	 	NUMBER(6,	2),
	Manager_ID	 		NUMBER(6),
	Dept_ID	 	 	 	NUMBER(4),
 PRIMARY KEY (Employee_ID),
 CONSTRAINT	 FK_DepEmp
 FOREIGN KEY (Dept_ID)
 REFERENCES Dept (Dept_ID)

);

CREATE TABLE employees
(

Employee_ID int NOT NULL,
First_NAME	 		varchar(20),
Last_Name varchar(25),
Email varchar(25),
Phone varchar(20),
Hire_Date	 	 			date,
Job_ID varchar(10),
Salary	 	 	 	 		decimal(6,	2),
Manager_ID	 			decimal(6,0),	
Dept_ID smallint,
PRIMARY KEY (Employee_ID),
CONSTRAINT	 FK_DepEmp
FOREIGN KEY (Dept_ID)
REFERENCES Dept (Dept_ID)

);

54 Chapter 5 Data Definition Language (DDL)

2. Using GUI Tools to Create a Table

1) Oracle

	 •	 Right	click	the	Table and select New Table.

Figure 5.8 Creating a new table in Oracle

	 •	 Enter table name “Customer” and column names. Choose data types and sizes.

Figure 5.9 Entering the table name and the column names

Chapter 5 Data Definition Language (DDL) 55

2) SQL Server

	 •	 Right	click	the	Table and select New Table.

Figure 5.10 Creating a table in SQL Server

	 •	 Enter	column	names.	Choose	data	types	and	sizes.

Figure 5.11 Entering the column names

3) MySQL

	 •	 Right	click	the	Table and select Create Table.

Figure 5.12	 Creating	a	table	in	MySQL

56	 Chapter 5 Data Definition Language (DDL)

Using Data from an Existing Table to Create a Table

Syntax	(Oracle	&	MySQL)	

 CREATE TABLE Table_Name AS

	 	 	 	 SELECT	…	FROM	

Syntax (T-SQL)

 SELECT … INTO Table_Name

 FROM Original_Table

Question 1: Write a query to create a table Emp using the Employees table and having
the employees who were hired after January 1st 2017.

Answer in Oracle SQL:

 CREATE TABLE Emp AS

 SELECT First_name, Last_Name
	 	 	 FROM	Employees
	 	 	 WHERE	Hire_date	>=	‘01-JAN-2017’;

	 •	 Enter table name and column names. Choose data types and sizes.

Figure 5.13 Entering the table name and the column names

Chapter 5 Data Definition Language (DDL) 57

Answer	in	MySQL:

 CREATE TABLE Emp As
 SELECT First_name, Last_Name
	 	 	 FROM	Employees	
	 	 	 WHERE	Hire_date	>=	‘2017-01-01’;

Figure 5.14 Query Output for question 1 (Oracle)

Answer in T-SQL:

 SELECT First_Name, Last_Name INTO Emp
	 	 	 FROM	Employees
	 	 	 WHERE	Hire_date	>=	‘2017-01-01’;

Figure 5.15 Query Output for question 1 (SQL Server)

58 Chapter 5 Data Definition Language (DDL)

Figure 5.16	 Query	Output	for	question	1	(MySQL)

Renaming a Table

Syntax (Oracle)

 RENAME old_table_name TO new_table_name;

Syntax (MySQL)

 RENAME TABLE old_table_name TO new_table_name;

Question 2: Rename Departments table to Dept.

Answer (Oracle):

 RENAME Departments TO Dept;

Answer	(MySQL):

 RENAME TABLE Departments TO Dept;

Figure 5.17 Two tables are renamed

Oracle MySQL

Chapter 5 Data Definition Language (DDL) 59

Renaming a Table in GUI Tools

1) Oracle

	 •	 Right	click	Departments table and select Table->Rename

Figure 5.18 GUI renaming name in Oracle

2) SQL Server

	 •	 Right	click	the	dbo.Departments and select Rename.

Figure 5.19 GUI renaming name in SQL Server

60	 Chapter 5 Data Definition Language (DDL)

3) MySQL
	 •	 Right	click	departments table and select Alter Table…

Figure 5.20	 GUI	renaming	name	in	MySQL

Dropping a Table

Description: Deletes a table from a database.
Syntax

 DROP TABLE Table_Name;

Question: Write a query to drop the Emp Table.

Answer: DROP TABLE Emp;

Table 5.9 Query Output for dropping command

Oracle SQL T-SQL MySQL

table	EMP	dropped. Command(s) completed successfully. 0 row(s) affected.

Chapter 5 Data Definition Language (DDL) 61

Altering a Table (Modifying a Column)

Syntax

 ALTER TABLE MODIFY Column Type (Oracle	&	MySQL)

 ALTER TABLE ALTER COLUMN Column Type (T-SQL)

Question:	 Write	a	query	to	Modify	Column	Salary	from	Number	(6,	2)	to	Number	(7,	2).

Answer (Oracle):

 ALTER TABLE	EMPLOYEES	MODIFY	SALARY	NUMBER	(7,	2);

Figure 5.21 Altering a table in Oracle

Table 5.10 Query Output for TRUNCATE command

Oracle SQL T-SQL MySQL

table	CUSTOMERS	truncated. Command(s) completed successfully. 0 row(s) affected.

Truncating a Table

Description: To remove all records from a table. The operation can’t be rolled back.
Syntax

 TRUNCATE TABLE Table_Name;

Question: Write a query to remove all the records in Customers table.

Answer: TRUNCATE TABLE Customers;

62	 Chapter 5 Data Definition Language (DDL)

Answer (T-SQL):
 ALTER TABLE	EMPLOYEES	ALTER COLUMN SALARY decimal (7, 2);

Figure 5.22 Altering a table in T-SQL

Altering a Table (Adding a Column)

Syntax

 ALTER TABLE table_name ADD Column Type

Question: Write a query to add Commission column to the Employee table.

Answer	(MySQL):
 ALTER TABLE	EMPLOYEES	MODIFY SALARY decimal (7, 2);

Figure 5.23	 Altering	a	table	in	MySQL

Chapter 5 Data Definition Language (DDL) 63

Figure 5.24 Adding a column in Oracle

Answer (Oracle):

 ALTER TABLE	EMPLOYEES	ADD	COMMISSION	NUMBER	(6,	2);

Figure 5.25 Adding a column in T-SQL

Answer (T-SQL):

 ALTER TABLE EMPLOYEES	ADD	COMMISSION	decimal	(6,	2);

64	 Chapter 5 Data Definition Language (DDL)

Answer	(MySQL):
 ALTER TABLE	EMPLOYEES	ADD	COMMISSION	numeric	(6,	2);

Figure 5.26	 Adding	a	column	in	MySQL

Summary

Chapter 5 covers the following:

	 •	 How	to	CREATE	DATABASE	in	SQL	commands
	 •	 How	to	CREATE	DATABASE	in	GUI	tools
	 •	 How	to	CREATE	TABLE	in	SQL	commands
	 •	 How	to	CREATE	TABLE	in	GUI	tools
	 •	 Creating	tables	that	used	in	this	book
	 •	 How	to	RENAME	TABLE	
	 •	 How	to	DROP	DATABASE
	 •	 How	to	TRUNCATE	TABLE
	 •	 How	to	ALTER	COLUMN

Exercises

5.1

Write SQL commands to create a database.

5.2

Write SQL commands to create three tables in the database.

5.3

Write a query to add a column Budget in the Departments table.

5.4

Write a SQL command to rename table Employees to Emp.

Chapter 6

 Data Manipulation
Language (DML)

We have learned Data Definition Language (DDL) in the last chapter. After creating a
database and tables the next task is to insert data. If there are errors in a table we should
update a record or delete a record. Data Manipulation Language (DML) is used to retrieve
and manipulate data in SQL. The main statements for DML are:

SELECT
INSERT INTO
UPDATE… SET
DELETE FROM

Let us start with INSERT INTO command. How can we select data from a table without
data? The following INSERT INTO statements are used to add records to the tables in the
last chapter. These statements work for Oracle, T-SQL and MySQL.

INSERT INTO

Description—Inserts a one or more records into a table
Syntax 1

INSERT INTO table (col1, col2, ...)
VALUES (exp1, exp2, ...);

Syntax 2
INSERT INTO table
VALUES (exp1, exp2, ...);

Note:
Inserting data in the same order as that in the table for the second style.

Although INSERT INTO statements are the same for Oracle, T-SQL and MySQL but the
date format is different:
For example, Oracle date format is DD-MM-YY.

INSERT INTO Employees
VALUES (100,‘Douglas’,‘Grant’,‘DGRANT’,‘650.507.9844’,‘23-Jan-08’,‘SH_
CLERK’,2600,114,50);

66 Chapter 6 Data Manipulation Language (DML)

T-SQL and MySQL date format is YYYY-MM-DD.

For example,
INSERT INTO Employees
VALUES (100,‘Douglas’,‘Grant’,‘DGRANT’,‘650.507.9844’,‘2008-01-23’,‘SH_
CLERK’,2600,114,50);

Insert Data into Employees Table (Oracle Date format)

We shall use Oracle SQL Developer to demonstrate inserting data to the Employees table.
Enter the following in query worksheet and run the statements.

INSERT INTO Employees
VALUES (100, ‘Douglas’ , ‘Grant’ , ‘DGRANT’, ‘650.507.9844’ , ‘23-Jan-08’ , ‘SH_
CLERK’,2600,114,50);

INSERT INTO Employees
VALUES (101,‘Adam’,‘Fripp’,‘AFRIPP’,‘650.123.2234’,‘10-Apr-05’,‘SH_MGR’,8200,109,50);

INSERT INTO Employees
VALUES (102,‘Jennifer ’,‘Whalen’,‘JWHALEN’,‘515.123.4444’,‘17-Sep-03’,‘AD_
ASST’,4400,108,10);

INSERT INTO Employees
VALUES (103,‘Michael’,‘Hartstein’,‘MHARTSTE’,‘515.123.5555’,‘17-Feb-04’,‘MK_
MGR’,13000,109,20);

INSERT INTO Employees
VALUES (104,‘Pat’,‘Fay’,‘PFAY’,‘603.123.6666’,‘17-Aug-05’,‘MK_REP’,6000,103,20);

INSERT INTO Employees
VALUES (105, ‘Susan’ , ‘Mavris ’ , ‘SMAVRIS’ , ‘515 .123 .7777’ , ‘7 - Jun-02’ , ‘HR_
MGR’,6500,109,40);

INSERT INTO Employees
VALUES (106,‘Shelley’,‘Higgins’,‘SHIGGINS’,‘515.123.8080’,‘7-Jun-02’,‘SA_
MGR’,12008,109,80);

INSERT INTO Employees
VALUES (107,‘William’,‘Gietz’,‘WGIETZ’,‘515.123.8181’,‘7-Jun-02’,‘SA_REP’,8300,106,80);

INSERT INTO Employees
VALUES (108,‘Steven’,‘King’,‘SKING’,‘515.123.4567’,‘17-Jun-03’,‘AD_PRES’,24000,,10);

INSERT INTO Employees
VALUES (109,‘Lex’, ‘De Haan’,‘LDEHAAN’,‘515.123.4569’, ‘13-Jan-01’, ‘AD_
VP’,17000,108,10);

INSERT INTO Employees
VALUES (110,‘Bruce’,‘Ernst’,‘BERNST’,‘590.423.4568’,‘21-May-07’,‘IT_MGR’,6000,109,60);

Chapter 6 Data Manipulation Language (DML) 67

INSERT INTO Employees
VALUES (111,‘Diana’, ‘Lorentz’ , ‘DLORENTZ’,‘590.423.5567’, ‘7-Feb-07’, ‘IT_
PROG’,4200,110,60);

INSERT INTO Employees
VALUES (112,‘Nancy’,‘Greenberg’,‘NGREENBE’,‘515.124.4569’,‘17-Aug-02’,‘FI_
MGR’,12008,109,90);

INSERT INTO Employees
VALUES (113, ‘Daniel ’ , ‘Faviet ’ , ‘DFAVIET’ , ‘515.124.4169’ , ‘16-Aug-02’ , ‘FI_
CLERK’,3000,112,90);

	 •	 Expand	Table	in	the	Connection	pane	and	double	click	the	Employees	table:

 Figure 6.1 Columns in Employees table

	 •	 Click	Data tab to see the data from the Employees table.

 Figure 6.2 Data in Employees table

68 Chapter 6 Data Manipulation Language (DML)

Insert Data into Departments Table

INSERT INTO DEPARTMENTS VALUES (10,‘Administration’,200,1700);
INSERT INTO DEPARTMENTS VALUES (20,‘Marketing’,201,1800);
INSERT INTO DEPARTMENTS VALUES (30,‘Purchasing’,114,1700);

INSERT INTO DEPARTMENTS VALUES (40,‘Human Resources’,203,2400);
INSERT INTO DEPARTMENTS VALUES (50,‘Shipping’,121,1500);
INSERT INTO DEPARTMENTS VALUES (60,‘IT’,103,1400);

INSERT INTO DEPARTMENTS VALUES (70,‘Public Relations’,204,2700);
INSERT INTO DEPARTMENTS VALUES (80,‘Sales’,145,2500);
INSERT INTO DEPARTMENTS VALUES (90,‘Accounting’,205,1700);
INSERT INTO DEPARTMENTS VALUES (100,‘Customer Service’,203,2400);

Insert Data into Country Table

INSERT INTO COUNTRY VALUES (‘AR’,‘Argentina’,2);
INSERT INTO COUNTRY VALUES (‘AU’,‘Australia’,3);
INSERT INTO COUNTRY VALUES (‘BE’,‘Belgium’,1);

INSERT INTO COUNTRY VALUES (‘BR’,‘Brazil’,2);
INSERT INTO COUNTRY VALUES (‘CA’,‘Canada’,2);
INSERT INTO COUNTRY VALUES (‘CH’,‘Switzerland’,1);
INSERT INTO COUNTRY VALUES (‘CN’,‘China’,3);
INSERT INTO COUNTRY VALUES (‘DE’,‘Germany’,1);

INSERT INTO COUNTRY VALUES (‘DK’,‘Denmark’,1);
INSERT INTO COUNTRY VALUES (‘EG’,‘Egypt’,4);

INSERT INTO COUNTRY VALUES (‘FR’,‘France’,1);
INSERT INTO COUNTRY VALUES (‘IL’,‘Israel’,4);

Figure 6.3 Departments table

Chapter 6 Data Manipulation Language (DML) 69

INSERT INTO COUNTRY VALUES (‘IN’,‘India’,3);
INSERT INTO COUNTRY VALUES (‘IT’,‘Italy’,1);
INSERT INTO COUNTRY VALUES (‘JP’,‘Japan’,3);
INSERT INTO COUNTRY VALUES (‘KW’,‘Kuwait’,4);
INSERT INTO COUNTRY VALUES (‘ML’,‘Malaysia’,3);
INSERT INTO COUNTRY VALUES (‘MX’,‘Mexico’,2);
INSERT INTO COUNTRY VALUES (‘NG’,‘Nigeria’,4);
INSERT INTO COUNTRY VALUES (‘NL’,‘Netherlands’,1);
INSERT INTO COUNTRY VALUES (‘SG’,‘Singapore’,3);
INSERT INTO COUNTRY VALUES (‘UK’,‘United Kingdom’,1);
INSERT INTO COUNTRY VALUES (‘US’,‘United States of America’,2);
INSERT INTO COUNTRY VALUES (‘ZM’,‘Zambia’,4);
INSERT INTO COUNTRY VALUES (‘ZW’,‘Zimbabwe’,4);

Insert Data into Job Table

INSERT INTO Job VALUES (‘AD_PRES’,‘CEO’,9000,20000);
INSERT INTO Job VALUES (‘AD_VP’,‘VICE President’,8000,18000);
INSERT INTO Job VALUES (‘AD_ASST’,‘Admin Assistant’,5000,6000);
INSERT INTO Job VALUES (‘FI_CLERK’,‘Finance Clerk’,3000,4000);
INSERT INTO Job VALUES (‘FI_MGR’,‘Finance Manager’,4000,5000);

Figure 6.4 Country table

70 Chapter 6 Data Manipulation Language (DML)

INSERT INTO Job VALUES (‘SA_REP’,‘Sales Representative’,3000,4000);
INSERT INTO Job VALUES (‘SA_MGR’,‘Sales Manager’,4000,5000);
INSERT INTO Job VALUES (‘SH_CLERK’,‘Shipping Clerk’,2500,4000);
INSERT INTO Job VALUES (‘SH_MGR’,‘Shipping Manager’,4000,5000);
INSERT INTO Job VALUES (‘IT_PROG’,‘Programmer’,4000,5500);
INSERT INTO Job VALUES (‘IT_MGR’, ‘IT Manager’, 5000, 6000);
INSERT INTO Job VALUES (‘MK_CLERK’,‘Marketing Clerk’,3000,4000);
INSERT INTO Job VALUES (‘MK_MGR’,‘Marketing Manager’,4000,5000);
INSERT INTO Job VALUES (‘HR_MGR’,‘Human Resource Manager’,4000,5000);

Job Table

Insert Data into Location Table

INSERT INTO Locations
VALUES (1300,‘9450 Kamiya-cho’,‘6823’,‘Hiroshima’,’’,‘JP’);

INSERT INTO Locations
VALUES (1400,‘2014 Jabberwocky Rd’,‘26192’,‘Southlake’,‘Texas’,‘US’);

INSERT INTO Locations
VALUES (1500,‘2011 Interiors Blvd’,‘99236’,‘South San Francisco’,‘California’,‘US’);

INSERT INTO Locations
VALUES (1600,‘2007 Zagora St’,‘50090’,‘South Brunswick’,‘New Jersey’,‘US’);

Figure 6.5 Job table

Chapter 6 Data Manipulation Language (DML) 71

INSERT INTO Locations
VALUES (1700,‘2004 Charade Rd’,‘98199’,‘Seattle’,‘Washington’,‘US’);

INSERT INTO Locations
VALUES (1800,‘147 Spadina Ave’,‘M5V 2L7’,‘Toronto’,‘Ontario’,‘CA’);

INSERT INTO Locations
VALUES (1900,‘6092 Boxwood St’,‘YSW 9T2’,‘Whitehorse’,‘Yukon’,‘CA’);

INSERT INTO Locations
VALUES (2000,‘40-5-12 Laogianggen’,‘190518’,’Beijing’,’’,‘CN’);

INSERT INTO Locations
VALUES (2200,‘12-98 Victoria Street’,‘2901’,‘Sydney’,‘New South Wales’,‘AU’);

INSERT INTO Locations
VALUES (2400,‘8204 Arthur St’,’’,‘London’,’’,‘UK’);

INSERT INTO Locations
VALUES (2500,‘32 Peachtree Rd’,‘30303’,‘Atlanta’,‘GA’,‘US’);

INSERT INTO Locations
VALUES (2700,‘560 Main St’,‘37024’,‘Nashville’,‘TN’,‘US’);

Figure 6.6 Locations table

Insert Data into Regions Table

INSERT INTO REGIONS VALUES (1,‘Europe’);
INSERT INTO REGIONS VALUES (2,‘Americas’);
INSERT INTO REGIONS VALUES (3,‘Asia’);
INSERT INTO REGIONS VALUES (4,‘Middle East and Africa’);

72 Chapter 6 Data Manipulation Language (DML)

Regions Table

Figure 6.7 Regions table

SELECT Statement

Description—Retrieve records from one or more tables

Syntax SELECT column(s)
 FROM tables
 [WHERE conditions] —Optional
 [ORDER BY column(s) [ASC | DESC]]; —Optional

SELECT All Columns

Syntax SELECT *
 FROM tables
 [WHERE conditions] —Optional
 [ORDER BY column(s) [ASC | DESC]]; —Optional

Note: ASC – Ascending order
 DESC – Descending order

Question 1: Write a query to select all the data from the Departments table.

Answer:
 SELECT *
 FROM Departments;

 Figure 6.8 Query output for question 1

Oracle SQL T-SQL MySQL

Chapter 6 Data Manipulation Language (DML) 73

DISTINCT Clause

Description: Eliminates duplicates from the result of a SELECT statement.

Syntax
 SELECT DISTINCT column_name
 FROM table_name;

Question 3: Write a query to select the minimal salary without duplicates.

Answer:
 SELECT DISTINCT Min_Salary
 FROM Job;

SELECT Specific Column(s)

Question 2: Write a query to display department names.

Answer: SELECT dept_name
 FROM Departments;

 Figure 6.9 Query output for question 2

Oracle SQL T-SQL MySQL

74 Chapter 6 Data Manipulation Language (DML)

WHERE Clause

Description: When the condition is true the WHERE clause filters unwanted rows from
the result.

Syntax SELECT column(s)
FROM table
WHERE conditions;

Question 4: Write a query to get the name of a country with country_id “IT”.

Answer:
SELECT country_name
FROM COUNTRY
WHERE country_id = ‘IT’;

Oracle SQL T-SQL MySQL

 Figure 6.10 Query output for question 3

Oracle SQL T-SQL MySQL

Figure 6.11 Query output for question 4

Arithmetic Operators

You can create an expression with number and field value using arithmetic operators:
Addition (+), Subtraction (–), Multiplication (*), Division (/).

Question 5: Write a query to display job title, minimal salary with 10% increased minimal
salary.

Chapter 6 Data Manipulation Language (DML) 75

Answer (Oracle):

SELECT Job_Title, Min_Salary, Min_Salary * 1.1
FROM JOB;

Figure 6.12 Query output for question 5

Answer (T-SQL & MySQL):

SELECT Job_Title, Min_Salary, Min_Salary * 1.1 AS ‘Min_Salary * 1.1’
FROM JOBS;

Figure 6.13 Query output for question 5 (Left: T-SQL, Right: MySQL)

76 Chapter 6 Data Manipulation Language (DML)

Order of Arithmetic Operators

Priority Level 1: % Modulo / Division * Multiplication
Priority Level 2: + Addition – Minus

General Rule

Modulo operator, multiplication operator and division operator are calculated first then
addition and minus operator are processed.
In order to change the priority we can add parentheses.

Comparison Operators

= Equal to
> Greater than
< Less than
>= Greater than equal to
<= Less than equal to
<> Not equal to

Question 6: Write a query to get employee names with hire date greater than Jan 1st, 2017.

Answer (Oracle):

 SELECT First_Name, Last_Name, hire_date
 FROM Employees
 WHERE hire_date > ‘01-JAN-17’;

Answer (T-SQL & MySQL):

 SELECT First_Name, Last_Name, hire_date
 FROM Employees
 WHERE hire_date > ‘2017-01-01’;

Figure 6.14 Query output for question 6

Oracle SQL T-SQL MySQL

Chapter 6 Data Manipulation Language (DML) 77

OR Condition

Description: Test multiple conditions in a SELECT, INSERT, UPDATE, or DELETE
statement. Any one of the conditions must be true for a record to be selected.

Syntax
 SELECT column(s)
 FROM table_name
 WHERE condition {OR condition};

AND Condition

Description: Test for two or more conditions in a SELECT, INSERT, UPDATE, or DELETE
statement. All conditions must be true for a record to be selected.

Syntax
 SELECT column(s)
 FROM table
 WHERE condition {AND condition};

Question 7: Write a query to get employee names with hire date greater than January 1st,
2017 and salary less than $5,000.

Answer (Oracle):

 SELECT First_Name, Last_Name, hire_date
 FROM Employees
 WHERE hire_date > ‘01-JAN-17’
 AND salary < 5000;

Answer (T-SQL & MySQL):

 SELECT First_Name, Last_Name, hire_date
 FROM Employees
 WHERE hire_date > ‘2017-01-01’
 AND salary < 5000;

Figure 6.15 Query output for question 7

Oracle SQL T-SQL MySQL

78 Chapter 6 Data Manipulation Language (DML)

Question 8: Write a query to get employee job title for Shipping Manager or minimal salary
is $5,000.

Answer: SELECT Job_Title, Min_Salary
 FROM JOB
 WHERE Job_Title = ‘Shipping Manager’
 OR Min_Salary = 5000;

Figure 6.16 Query output for question 8

Oracle SQL T-SQL MySQL

IN Condition

Description: Test if an expression matches any value in a list of VALUES. It can reduce the
need for multiple OR conditions in a SELECT, INSERT, UPDATE, or DELETE statement.

Syntax SELECT column(s)
 FROM table
 WHERE column_name IN (value1, value2,…);
 [WHERE column_name NOT IN (value1, value2,…);]

Question 9: Write a query to state/province and country ID with city in Seattle or Toronto.

Answer:
 SELECT City, State_Province, Country_ID
 FROM LOCATIONS
 WHERE city IN (‘Seattle’, ‘Toronto’);

Figure 6.17 Query output for question 9

Oracle SQL T-SQL MySQL

Chapter 6 Data Manipulation Language (DML) 79

IS NULL

Description: Uses IS NULL to test a NULL value.

Syntax (Oracle) expression IS NULL

Syntax (T-SQL & MySQL) expression = ‘ ‘

Question 11: Write a query to find cities without states or provinces.

Answer (Oracle):

 SELECT CITY, STATE_PROVINCE, COUNTRY_ID
 FROM Locations
 WHERE STATE_PROVINCE IS NULL;

BETWEEN Condition

Description: To check if an expression is within a range of VALUES.

Syntax SELECT column(s)
 FROM table_name
 WHERE column_name BETWEEN value1 AND value2;

Question 10: Write a query to get employee names with hire date from January 1st, 2014 to
December 31, 2015.

Answer (Oracle):

 SELECT First_Name, Last_Name, hire_date
 FROM Employees
 WHERE hire_date BETWEEN ‘01-JAN-14’ AND ‘31-DEC-15’;

Answer (T-SQL & MySQL):

 SELECT First_Name, Last_Name, hire_date
 FROM Employees
 WHERE hire_date BETWEEN ‘2014-01-01’ AND ‘2015-12-31’;

 Figure 6.18 Query output for question 10

Oracle SQL T-SQL MySQL

80 Chapter 6 Data Manipulation Language (DML)

IS NOT NULL

Description: Uses IS NULL to test a NOT NULL value.

Syntax (Oracle) expression IS NOT NULL

Syntax (T-SQL & MySQL) expression < > ‘ ‘

Question 12: Write a query to find cities with states or provinces.

Answer (Oracle):

 SELECT CITY, STATE_PROVINCE, COUNTRY_ID
 FROM Locations
 WHERE STATE_PROVINCE IS NOT NULL;

Answer (T-SQL & MySQL):

 SELECT CITY, STATE_PROVINCE, COUNTRY_ID
 FROM Locations
 WHERE STATE_PROVINCE <> ‘ ‘;

Figure 6.20 Query output for question 11 (Oracle)

Answer (T-SQL & MySQL):

 SELECT CITY, STATE_PROVINCE, COUNTRY_ID
 FROM Locations
 WHERE STATE_PROVINCE = ‘ ‘;

Figure 6.19 Query output for question 11

Oracle SQL T-SQL MySQL

Chapter 6 Data Manipulation Language (DML) 81

Figure 6.21 Query output for question 12 (Left: T-SQL, Right: MySQL)

LIKE Condition

Description: Uses wildcards to perform pattern matching in a query.
 % (percent sign)—represents zero, one, or more characters.
 _ (underscore)—represents exactly one character.

Syntax SELECT column(s)
 FROM table_name
 WHERE expression LIKE pattern

Question 13: Write a query to get country IDs and country names that begins with “U”.

Answer:
 SELECT country_id, country_name
 FROM COUNTRY
 WHERE country_name
 LIKE ‘U%’;

Figure 6.22 Query output for question 13

Oracle SQL T-SQL MySQL

Question 14: Write a query to get country ID and full country name for “Isr?el”.

Answer:
 SELECT country_id, country_name
 FROM COUNTRY

82 Chapter 6 Data Manipulation Language (DML)

ORDER BY Clause

Description: To sort the records in the result set for a SELECT statement.

Syntax
 SELECT Column(s)
 FROM tables
 WHERE conditions
 ORDER BY expression [DESC];

Note: Order By express returns result in ascending order by default
 DESC—descending order

Question 15: Write a query to display the department names in ascending order.

Answer:
 SELECT Dept_Name
 FROM Departments;
 ORDER BY Dept_Name;

Figure 6.24 Query output for question 15

Oracle SQL T-SQL MySQL

Figure 6.23 Query output for question 14

Oracle SQL T-SQL MySQL

 WHERE country_name
 LIKE ‘Isr_el’;

Chapter 6 Data Manipulation Language (DML) 83

Question 17: Write a query to display employee names, salary and department ID by
ascending order of department and salary.

Answer (Oracle):

 SELECT first_name || ‘ ‘ || last_name AS Full_Name, Salary, Dept_ID
 FROM employees
 ORDER BY Dept_ID, Salary;

Answer (T-SQL):

 SELECT first_name + ‘ ‘ + last_name AS Full_Name, Salary, Dept_ID
 FROM employees
 ORDER BY Dept_ID, Salary;

Answer (MySQL):

 SELECT CONCAT(first_name, ‘ ‘, last_name) AS Full_Name, Salary, Dept_ID
 FROM employees
 ORDER BY Dept_ID, Salary;

Question 16: Write a query to display the department names in descending order.

Answer:
 SELECT Dept_Name
 FROM Departments
 ORDER BY Dept_Name DESC;

Figure 6.25 Query output for question 16

Oracle SQL T-SQL MySQL

84 Chapter 6 Data Manipulation Language (DML)

Using Aliases

Description: Creates a temporary name for columns or tables.

Syntax (Column Aliases) SELECT column_name AS alias_name
 FROM Tables

Syntax (Table Aliases) SELECT column_name
 FROM Tables AS alias_name

Question 18: Write a query to use alias names for minimum salary and maximum salary.

Answer:
 SELECT min(salary) AS Minimum_Salary,
 max(salary) AS Maximum_Salary
 FROM Employees;

 Figure 6.27 Query output for question 18

Oracle SQL T-SQL MySQL

Figure 6.26 Query output for question 17

Oracle SQL T-SQL MySQL

Note:
See Chapter 7 for min() and max() functions. For table aliases examples see Chapter 10.

Chapter 6 Data Manipulation Language (DML) 85

INSERT multiple records from an Existing table

Syntax INSERT INTO table (col1, col2, ...)
 SELECT col1, col2, …
 FROM source_tables
 [WHERE conditions];

We use Oracle SQL as example. Suppose we have following records in Customers table:

 Figure 6.28 Customers table

Figure 6.29 Query output for question 19

Question 19: Write a query to insert all the records in Customers table to the Employees
table.

Answer:
 INSERT INTO Employees (Employee_ID, First_Name, Last_Name, phone)
 SELECT ID, FirstName, LastName, phone
 FROM Customers;

86 Chapter 6 Data Manipulation Language (DML)

UPDATE Statement

Description: Updates existing records in the tables

Syntax UPDATE table
 SET col1 = value1, col2 = value2, ...
 [WHERE conditions];

Question 20: Write a query to update the first name “Adam” to “James” (Employee ID is
101).

Answer:
 UPDATE Employees
 SET First_Name = ‘James’
 WHERE Employee_Id = 101;

To check the updated record:

 SELECT First_Name, Last_Name
 FROM Employees
 WHERE Employee_id = 101;

Figure 6.30 Query output for question 20

Oracle SQL T-SQL MySQL

DELETE Statement

Description: Deletes one or more records from a table.
Syntax DELETE FROM table
 [WHERE conditions];

Question 21: Write a query to remove department Warehouse.

Answer:
 DELETE FROM Departments
 WHERE Dept_Id = 11;

Chapter 6 Data Manipulation Language (DML) 87

Data Control Language (DCL)

We mentioned in Chapter 5 that there are two main statements in Data Control Language:
GRANT and REVOKE. Actually, we have already used GRANT statement on page 48
when we create database in Oracle.

GRANT: Assigns privileges on database objects to a user. The system privileges can be
CONNECT, CREATE. The table privileges can be INSERT, UPDATE, DELETE, or ALTER.

Syntax

 GRANT system privileges TO user;
 GRANT table privileges ON objects TO user;

In the following example, we GRANT CONNECT and DBA privileges to a user TEST_DB.
 GRANT CONNECT, DBA TO TEST_DB;

In the following example, we GRANT INSERT privileges to a user TEST_DB.
 GRANT INSERT ON Departments TO TEST_DB;

If you want to grant all the privileges to a user you can use ALL keyword:
 GRANT ALL ON Departments TO TEST_DB;

REVOKE: Removes privileges from a user.

Syntax

 REVOKE privileges ON objects FROM user;

Example:
 REVOKE DBA TO TEST_DB;
 REVOKE INSERT ON Departments TO TEST_DB;

Summary

Chapter 6 covers the following:

	 •	 Data	Manipulation	Language	(DML)
	 •	 Using	INSERT	INTO	statements	to	insert	data	to	the	six	tables	used	in	this	book
	 •	 SELECT	statements	in	Oracle	SQL,	T-SQL	and	MySQL
	 •	 Using	arithmetic	operators
	 •	 Using	comparison	operators
	 •	 UPDATE	and	DELETE	statements

Exercises

6.1

Write a query to display all the countries.

88 Chapter 6 Data Manipulation Language (DML)

6.2

Write a query to display specific columns like email and phone number for all the
employees.

6.3

Write a query to display the data of employee whose last name is “Fay”.

6.4

Write a query to find the hire date for employees whose last name is “Grant” or “Whalen”.

6.5
Write a query to display name of the employee who is shipping manager.

6.6
Write a query to get all the employees who work for department 20.

6.7
Write a query to display the departments in the descending order.

6.8
Write a query to display all the employees whose last name starts with “M”.

6.9
Display name of the employees whose hire dates are between 2015 and 2017.

6.10
Write a query to display jobs where the maximum salary is less than 5000.

6.11
Write a query to display email address in lower case.

6.12
Write a query to display name of the employees who were hired in 2015.

6.13
Write a query to insert an employee “Paul Newton” in department 20.

6.14
Write a query to delete the shipping department.

Chapter 7

Aggregate Functions and
GROUP BY Clause

Database developers often need to answer questions such as how many employees are
there in each department. In order to write queries for this kind of summary questions
we need to understand the aggregate functions and Group By clause. We will use the
Employees table for sample data in this chapter.

Figure 7.1 Employees table

Aggregate Functions

Syntax SELECT Aggregate Function (column_name)
 From Table

Below are the main aggregate functions:

AVG () : To select the average value for certain table column.

COUNT () : To count the number of rows in a database table.

90 Chapter 7 Aggregate Functions and GROUP BY Clause

MAX () : To select the highest value for a certain column.
 It returns the maximum value for numeric data column.
 It returns the latest date for date column.
 It returns the last records for a character column.

MIN () : To select the lowest value for a certain column.
 It returns the minimum value for a numeric data column.
 It returns the earliest date for a date column.
 It returns the first records for a character column.

SUM () : To select the total for a numeric column.

ROUND () : To round a number to a specified decimal places.

AVG () Function

Question: Write a query to find average salary in the Employees table.

Answer (Oracle & MySQL):

 SELECT AVG(salary)
 FROM Employees;

Answer (T-SQL):

 SELECT AVG (Salary) AS ‘Average Salary’
 FROM Employees;

Figure 7.2 Query output for AVG() function

Oracle SQL T-SQL MySQL

COUNT () Function

Question: Write a query to count the Employees.

Answer (Oracle & MySQL):

 SELECT COUNT(*)
 FROM Employees;

Chapter 7 Aggregate Functions and GROUP BY Clause 91

MIN () Function

Question: Write a query to get the minimum salary in the Employees table.

Answer (Oracle & MySQL):

 SELECT MIN(Salary)
 FROM Employees;

Answer (T-SQL):

 SELECT MIN (Salary) AS Max_Salary
 FROM Employees;

Figure 7.4 Query output MIN() function (number type)

Oracle SQL T-SQL MySQL

Question: Write a query to display the first record in the last name column.

Answer (Oracle & MySQL):

 SELECT MIN(Last_Name)
 FROM Employees;

Oracle SQL T-SQL MySQL

Figure 7.3 Query output COUNT() function

Answer (T-SQL):

 SELECT COUNT (*) AS Count_of_Employees
 FROM Employees;

92 Chapter 7 Aggregate Functions and GROUP BY Clause

MAX () Function

Question: Write a query to get maximum salary in the Employees table.

Answer (Oracle & MySQL):

 SELECT MAX(Salary)
 FROM Employees;

Answer (T-SQL):

 SELECT MAX (Salary) AS Max_Salary
 FROM Employees;

Figure 7.6 Query output for MAX() function (number type)

Oracle SQL T-SQL MySQL

Question: Write a query to display the last record in the last name column.

Answer (Oracle & MySQL):

 SELECT MAX(Last_Name)
 FROM Employees;

Figure 7.5 Query output for MIN() function (character type)

Oracle SQL T-SQL MySQL

Answer (T-SQL):

 SELECT MIN(Last_Name) AS Last_Name
 FROM Employees;

Chapter 7 Aggregate Functions and GROUP BY Clause 93

Question: Write a query to display the latest hire date in the Employees table.

Answer (Oracle & MySQL):

 SELECT MAX(Hire_Date)
 FROM Employees;

Answer (T-SQL):

 SELECT MAX (Hire_Date) AS Hire_Date
 FROM Employees;

Oracle SQL T-SQL MySQL

Figure 7.8 Query output for MAX() function (date type)

SUM () Function

Question: Write a query to calculate the total amount of employee salary from the
Employee table.

Answer (Oracle & MySQL):

 SELECT SUM(Salary)
 FROM Employees;

Answer (T-SQL):

 SELECT MAX (Last_Name) AS Last_Name
 FROM Employees;

Oracle SQL T-SQL MySQL

Figure 7.7 Query output for MAX() function (character type)

94 Chapter 7 Aggregate Functions and GROUP BY Clause

Oracle SQL T-SQL MySQL

Figure 7.9 Query output for SUM() function

Answer (T-SQL):

 SELECT SUM (Salary) AS Total_Salary
 FROM Employees;

GROUP BY and HAVING Clause

The GROUP BY statement is used with the aggregate functions to group data from a
column. HAVING clause is used in a GROUP BY statement. It sets conditions on group(s).
HAVING clause is used in SELECT statement.

Syntax SELECT Aggregate Function (column_name)
 FROM tables
 [WHERE conditions]
 GROUP BY column_name
 [HAVING conditions]
 [ORDER BY column(s) [ASC | DESC]];

GROUP BY with AVG () Function

Question: Write a query to find average salary for each department.

Answer (Oracle & MySQL):

 SELECT AVG (salary), Dept_ID
 FROM Employees
 GROUP BY Dept_ID
 ORDER BY Dept_ID;

Answer (T-SQL):

 SELECT AVG (Salary) AS ‘Average Salary’, Dept_ID
 FROM Employees
 GROUP BY Dept_ID
 ORDER BY Dept_ID;

Chapter 7 Aggregate Functions and GROUP BY Clause 95

Note:
If you do not list Dept_ID in the SELECT clause the result has only one column Average
Salary. It is not clear for which group (department). So always list the Group By column(s)
in the SELECT clause.

GROUP BY with COUNT () Function

Question: Write a query to count number of employees in every department.

Answer (Oracle & MySQL):

 SELECT COUNT(Employee_ID), Dept_ID
 FROM Employees
 GROUP BY Dept_ID
 ORDER BY Dept_ID;

Answer (T-SQL):

 SELECT COUNT (Employee_ID) AS ‘Nunber of Employees’, Dept_ID
 FROM Employees
 GROUP BY Dept_ID
 ORDER BY Dept_ID;

Figure 7.10 Query output for GROUP BY with AVG() function

Oracle SQL T-SQL MySQL

96 Chapter 7 Aggregate Functions and GROUP BY Clause

Oracle SQL T-SQL MySQL

Figure 7.11 Query output for GROUP BY with COUNT() function

GROUP BY with HAVING Example

Question: Write a query to count employees for the departments that have three employees.

Answer (Oracle & MySQL):

 SELECT COUNT (Employee_ID), Dept_ID
 FROM Employees
 GROUP BY Dept_ID
 HAVING COUNT (Employee_ID) = 3;

Answer (T-SQL):

 SELECT COUNT (Employee_ID) AS ‘Nunber of Employees’, Dept_ID
 FROM Employees
 GROUP BY Dept_ID
 HAVING COUNT (Employee_ID) = 3;

Oracle SQL T-SQL MySQL

Figure 7.12 Query output for GROUP BY with HAVING example

Chapter 7 Aggregate Functions and GROUP BY Clause 97

Summary

Chapter 7 covers the following:

	 •	 Using	 aggregate	 function	 AVG	 (),	 COUNT	 (),	 MAX	 (),	 MIN	 (),	 SUM	 ()	 and	
ROUND ().

	 •	 Using	GROUP	BY	and	HAVING	clauses.
	 •	 Using	GROUP	BY	with	AVG	()	Function.
	 •	 Using	GROUP	BY	with	COUNT	()	Function.

Exercises

7.1

Write a query to display the number of cities in the country.

7.2
Write a query to display minimal salary of employees in every department.

7.3

Write a query to display maximum salary of employees in every department.

7.4

Write a query to display sum of salary of employees in every department.

7.5

Write a query to display sum of salary in every department.

7.6

Display the ID of departments with average salary greater than 15000.

7.7

Write a query to display the number of employees managed by the manager.

7.8

 Write a query to display managers who are managing more than 3 employees.

7.9

Write a query to increase salary of employee 111 to 5000.

Chapter 8

Functions

Common Number Functions

The numeric functions take a numeric input as an expression and return numeric values.
The return type for most of the numeric functions is NUMBER.
For aggregate functions AVG (), COUNT (), MAX (), MIN () and SUM () check
Chapter 7 for examples.
Let’s list common number functions below.

Table 8.1: Common Number Functions

Oracle SQL T-SQL MySQL

CEIL () CEILING () CEIL (), CEILING ()

FLOOR () FLOOR () FLOOR ()

GREATEST () GREATEST ()

LEAST () LEAST ()

MOD () % MOD ()

POWER (m, n) POWER (m, n) POW (m, n), POWER (m, n)

ROUND () ROUND () ROUND ()

SQRT () SQRT () SQRT ()

TRUNC () TRUNC ()

CEIL () – Oracle and MySQL

CEILING () – T-SQL
Description: Returns the smallest whole number greater than or equal to a specified
number.

Syntax CEIL (number)
 CEILING (number)

Question 1: Write a query to find a whole number that is greater than or equal to 12.5.

Chapter 8 Functions 99

FLOOR ()

Description—Returns the largest whole number less than or equal to a specified number.

Syntax FLOOR (number)

Question 2: Write a query to get a whole number that is less than or equal to 12.5.

Answers:

Figure 8.2 Query and output for question 2

Oracle SQL T-SQL MySQL

SELECT FLOOR (12.5)
FROM dual;

SELECT FLOOR (12.5)
Floor;

SELECT FLOOR (12.5);

GREATEST () – Oracle and MySQL
Description—Returns the greatest number or the largest character value in a list.
Syntax GREATEST (a list of numbers or characters)

Question 3: Write a query to display the greatest number in a list of 4, 8 and 2.

Answers:

Oracle SQL MySQL

SELECT GREATEST (4, 8, 2)
FROM dual;

SELECT GREATEST (4, 8, 2);

Figure 8.3 Query and output for question 3

Figure 8.1 Query and output for question 1

Oracle SQL T-SQL MySQL

SELECT CEIL (12.5)
FROM dual;

SELECT CEILING (12.5) SELECT CEIL (12.5);

Answers:

100 Chapter 8 Functions

LEAST () – Oracle and MySQL
Description: Returns the smallest number in a list.

Syntax LEAST (a list of numbers)

Question 5: Write a query to display the smallest number in a list of 4, 8 and 2.

Answers:

Oracle SQL MySQL

SELECT LEAST (4,8,2)
FROM dual;

SELECT LEAST (4,8,2);

Figure 8.5 Query and output for question 5

MOD () – Oracle and MySQL
 % Operator – T-SQL

Description: Returns the remainder of Num1 divided by Num2.

Syntax MOD (Num1, Num2)
 Num1 % Num2 (T-SQL)

Question 6: Write a query to get the remainder of 10 modulo 4.

Figure 8.4 Query and output for question 4

Oracle SQL MySQL

SELECT GREATEST (‘F’, ‘U’, ‘B’)
FROM dual;

SELECT GREATEST (‘F’, ‘U’, ‘B’)

Question 4: Write a query to display the largest character value in a list of ‘F’, ‘U’, and ‘B’.

Answers:

Chapter 8 Functions 101

POWER ()

Description: Returns Num1 raised to the Num2th power

Syntax POWER (Num1, Num2)

Question 7: Write a query to display the 2 raised to 3 power.

Answers:

Oracle SQL T-SQL MySQL

SELECT POWER (2, 3)
from dual;

SELECT POWER (2, 3)
AS Power;

SELECT POWER (2, 3);
SELECT POW (2, 3);

Figure 8.7 Query and output for question 7

ROUND () Function

Description: Returns a number rounded to a certain digits after decimal points.

Syntax ROUND (Number, d)
 Number – Column number or single number
 d – decimal places

Question 8: Write a query to round 267.389 with 2 digits after decimal points.

Figure 8.6 Query and output for question 6

Oracle SQL T-SQL MySQL

SELECT MOD (10, 4)
FROM dual;

SELECT 10% 4 as Mod; SELECT MOD (10, 4);
SELECT 10 MOD 4;

Answers:

102 Chapter 8 Functions

TRUNC () – Oracle & MySQL
Description: Returns Number truncated to d decimal places. The result number is not
rounded.

Syntax TRUNC (Number, d)
 d – decimal places

Question 10: Write a query to truncate 528.915 with 2 decimal places.

Figure 8.9 Query and output for question 9

Oracle SQL T-SQL MySQL

SELECT SQRT (100)
FROM dual;

SELECT SQRT (100)
AS Sqrt;

SELECT SQRT (100)

SQRT ()

Description: Returns the square root of a number.

Syntax

SQRT (Number)

Question 9: Write a query to display a square root of 100.

Answers:

Answers:

Figure 8.8 Query and output for question 8

Oracle SQL T-SQL MySQL

SELECT ROUND (267.389, 2)
FROM dual;

SELECT ROUND (267.389, 2)
AS Round;

SELECT ROUND (267.389, 2)

Chapter 8 Functions 103

COMMON STRING FUNCTIONS

Let’s list common string functions below.

Table 8.2: Common String Functions

Oracle SQL T-SQL MySQL

CONCAT () CONCAT () CONCAT ()

CONCAT () using || CONCAT () using +

FORMAT ()

LEFT () LEFT ()

INITCAP ()

LENGTH () LEN () LENGTH ()

LOWER () LOWER () LOWER ()

LPAD () LPAD ()

LTRIM () LTRIM () LTRIM ()

REPLACE () REPLACE () REPLACE ()

RIGHT () RIGHT ()

RPAD () RPAD ()

RTRIM () RTRIM () RTRIM ()

SUBSTR () SUBSTRING () SUBSTR (), SUBSTRING ()

TRIM () TRIM ()

UPPER () UPPER () UPPER ()

Oracle SQL MySQL

SELECT TRUNC (528.915, 2)
FROM DUAL;

SELECT TRUNCATE (528.915, 2);

Figure 8.10 Query and output for question 10

Answers:

104 Chapter 8 Functions

CONCAT ()

Description: Concatenates two strings together.

Syntax CONCAT (string1, string2)

Question 11: Write a query to concatenate first name and last name.

Figure 8.12 The Job table

Figure 8.11 The Employees table

The Employees table and the Job table will be used for sample data in this section.

Chapter 8 Functions 105

CONCAT () with Oracle || operator or T-SQL ‘ + ’ operator

Syntax
 string1 || string2 (Oracle)
 string1 + string2 (T-SQL)

Question 12: Write a query to concatenate first name and last name using Oracle || operator
or T-SQL “+” operators.

Answer (Oracle):

 SELECT First_Name ||'' || Last_Name AS FullName
 FROM Employees;

Answer (T-SQL):

 SELECT First_Name + '' + Last_Name AS FullName
 FROM Employees;

Figure 8.14 Query output for question 12 (top 3 rows)

Oracle SQL T-SQL

Figure 8.13 Query output for CONCAT function (top 3 rows)

Oracle SQL T-SQL MySQL

Answer (Oracle):

 SELECT CONCAT (First_Name, CONCAT ('', Last_Name)) AS FullName
 FROM Employees;

Answer (T-SQL & MySQL):

 SELECT CONCAT (First_Name, '', Last_Name) AS FullName
 FROM Employees;

106 Chapter 8 Functions

LEFT () – T-SQL & MySQL
Description: Gets a certain number of characters from the left.

Syntax LEFT (string, length)
 length–length of specified number

Question 13: Get four characters from the left side of string “Database”.

Answer (T-SQL):

 SELECT LEFT(‘Database’, 4) AS Left_Function;

Answer (MySQL):

 SELECT LEFT(‘Database’, 4);

T-SQL MySQL

Figure 8.16 Query output for LEFT function

INITCAP () – Oracle
Description: Changes the 1st character in each word to uppercase.

Syntax INITCAP (string)

FORMAT () – MySQL
Description: Rounds a numeric value to a number of decimal places. The result is a string.

Syntax FORMAT (Number, d)
 d – decimal places

MySQL FORMAT function example:
 SELECT FORMAT(623.7085, 2);

Figure 8.15 Query output for FORMAT example

MySQL

Chapter 8 Functions 107

LENGTH () – Oracle & MySQL
LEN () – T-SQL
Description: returns the length of the specified string.

Syntax LENGTH (string)
 LEN (string)

Question 13: Write a query to display the country names that are greater than 10 characters
in length.

Answers (Oracle & MySQL):

 SELECT COUNTRY_NAME
 FROM Country
 WHERE LENGTH (country_name) >= 10;

Answer (T-SQL):

 SELECT COUNTRY_NAME
 FROM Country
 WHERE LEN (country_name) >= 10;

Figure 8.18 Query output for LEN (LENGTH) function

Oracle SQL T-SQL MySQL

Figure 8.17 Query output for INITCAP function

Oracle SQL

INITCAP function examples:

 SELECT INITCAP(‘oracle sql server mysql’)
 FROM dual;

 SELECT INITCAP(‘ORACLE SQL SERVER MYSQL’)
 FROM dual;

108 Chapter 8 Functions

LPAD () – Oracle and MySQL
Description: Adds a set of characters to the left side of a string

Syntax LPAD (string_1, padded_length, pad_characters)

Question 14: Add the area code ‘706’ to ‘352-7100’.

Answer (Oracle):

 SELECT LPAD (‘352-7100’, 12, ‘706-’)
 FROM dual;

LOWER ()

Description: Converts all letters in the specified string to lowercase.

Syntax LOWER (string)

Question 14: Write a query to display all the country names in lower case.

Answers (Oracle & MySQL):

 SELECT LOWER (country_name)
 FROM country;

Answers (T-SQL):

 SELECT
 LOWER (country_name) AS country_name
 FROM country;

Figure 8.19 Query output for LOWER function (top 3 rows)

Oracle SQL T-SQL MySQL

Chapter 8 Functions 109

LTRIM ()

Description: Removes a set of characters from the left side of a string.

Syntax LTRIM (string_1, trim_characters) (Oracle)
 LTRIM (string_1) (T-SQL & MySQL) – Removes space characters from
 the left side of a string.

Example (Oracle): Remove the area code 706 from ‘706-352-7100’.
 SELECT LTRIM (‘706-352-7100’, ‘706-’)
 FROM dual;

Example (T-SQL): Remove the left spaces from ‘706-352-7100’.
 SELECT LTRIM (‘706-352-7100’) AS LTRIM_Function;

Example (MySQL): Remove the left spaces from ‘706-352-7100’.
 SELECT LTRIM (‘706-352-7100’);

Figure 8.21 Query output for LTRIM function

Oracle SQL T-SQL MySQL

REPLACE ()

Description: Replaces part of a string with specified character(s).

Syntax REPLACE (‘string1’, ‘str_to_be_seached’, ‘str_to_to_replaced’)

Question 15: Write a query to replace ‘–’ with ‘.’ for the phone field.

Figure 8.20 Query output for LPAD function

Oracle SQL MySQL

Answer (MySQL):

 SELECT LPAD (‘352-7100’, 12, ‘706-’);

110 Chapter 8 Functions

RPAD () – Oracle and MySQL
Description—Adds a set of characters to the right side of a string.

Syntax RPAD (string_1, padded_length, pad_characters)

Question 17: Add ‘vision’ to the right side of string ‘Tele’.

Answer (Oracle):

 SELECT RPAD (‘Tele’, 10, ‘vision’) FROM dual;

Answer:
 SELECT first_name, last_name, REPLACE (phone, ‘–’, ‘.’) as Phone
 FROM employees;

Oracle SQL T-SQL MySQL

Figure 8.22 Query output for REPLACE function (Top 3 rows)

RIGHT () – T-SQL & MySQL
Desciption: Get a certain number of characters from the right.

Syntax RIGHT (string, length)
 length – length of specified number

Question 16: Get four characters from right side of string “Database”.

Answer (T-SQL):
 SELECT RIGHT(‘Database’, 4) AS Right_Function;

Answer (MySQL):
 SELECT RIGHT(‘Database’, 4);

Figure 8.23 Query output for RIGHT function

T-SQL MySQL

Chapter 8 Functions 111

SUBSTR ()

SUBSTRING ()

Description: Extract a substring from a start position with length in a string.

Syntax SUBSTR (string, position, length) (Oracle, MySQL)
 SUBSTRING (string, position, length) (T-SQL, MySQL)

 position – integer
 length – integer

Question 18: Write a query to display the first three characters for the last name field.

Figure 8.24 Query output for RPAD function

Oracle SQL MySQL

Answer (MySQL):

 SELECT RPAD (‘Tele’, 10, ‘vision’);

Figure 8.25 Query output for RTRIM function

Oracle SQL T-SQL MySQL

RTRIM ()

Description: Removes a set of characters from the right side of a string.

Syntax (Oracle)
 RTRIM (string_1, trim_characters)

Syntax (T-SQL & MySQL)
 RTRIM (string_1) – Removes space characters from the right side of a string.

Example (Oracle): Remove 0s in ‘57800’ .
 SELECT RTRIM (‘57800’, ‘0’)
 FROM dual;

Example (T-SQL & MySQL): Remove right spaces from ‘Television’.
 SELECT RTRIM (‘Television’) AS ‘RTRIM’;

112 Chapter 8 Functions

Answers (Oracle & MySQL):
 SELECT Last_Name, SUBSTR (Last_Name, 1, 3)
 FROM employees;

Answers (T-SQL & MySQL):
 SELECT Last_Name, SUBSTRING (Last_Name, 1, 3)
 FROM employees;

Figure 8.26 Query output for SUBSTR (SUBSTRING) function (Top 3 rows)

Oracle SQL T-SQL MySQL

UPPER ()

Description: Converts all letters in the specified string to upper case.

Syntax UPPER (string)

Question 17: Write a query to display all the country names in upper case.

Answers (Oracle & MySQL)
 SELECT UPPER (country_name)
 FROM country;

Answers (T-SQL)
 SELECT UPPER (country_name) AS country_name
 FROM country;

Figure 8.27 Query output for UPPER function (Top 3 rows)

Oracle SQL T-SQL MySQL

Chapter 8 Functions 113

Table 8.3 Date and Time Functions

Oracle SQL T-SQL MySQL

CURRENT_TIMESTAMP CURRENT_TIMESTAMP CURRENT_TIMESTAMP

Add_Months () DATEADD () DATE_ADD ()

EXTRACT () DATEPART () EXTRACT ()

CURRENT_DATE GETDATE () CURRENT_DATE

MONTHS_BETWEEN () DATEDIFF () PERIOD_DIFF ()

SYSDATE SYSDATETIME () SYSDATE ()

Common Date and Time Functions

Let’s list common date and time functions below.

Figure 8.28 Query output for Oracle CURRENT_TIMESTAMP

Oracle SQL

Figure 8.29 Query output for T-SQL and MySQL CURRENT_TIMESTAMP

T-SQL MySQL

CURRENT_TIMESTAMP

Example (Oracle):
 SELECT CURRENT_TIMESTAMP FROM dual;

Example (T-SQL):
 SELECT CURRENT_TIMESTAMP AS ‘Current_Time’;

Example (MySQL):
 SELECT CURRENT_TIMESTAMP;

114 Chapter 8 Functions

EXTRACT () – Oracle & MySQL
Description: Extracts the value of a specified date time field from a date time field.

Syntax EXTRACT (YEAR/MONTH/WEEK/DAY/HOUR/MINUTE
 FROM DATE)

DATEPART () – T-SQL

Question 19: Extract YEAR from April 4th, 2017.

Add_Months () – Oracle
Description: Returns a date with n months after the specified date.

Syntax
Add_Month (date, n)

DATEADD () – T-SQL

Syntax
DATEADD (month, n, date)

DATE_ADD () – MySQL

Syntax
DATE_ADD (date , INTERVAL n MONTH)

Question 18: Write a query to add one month to April 3rd, 2017

Answer (Oracle):

 SELECT ADD_MONTHS (‘03-Apr-17’, 1)
 FROM DUAL;

Answer (T-SQL):

 SELECT DATEADD (month, 1, ‘2017/04/03’) AS Date;

Answers (MySQL):

 SELECT DATE_ADD (“2017-04-17”, INTERVAL 1 MONTH)

Figure 8.30 Query output for Add month function

Oracle SQL T-SQL MySQL

Chapter 8 Functions 115

Answer (Oracle):

 SELECT EXTRACT (YEAR FROM DATE ‘2017-04-03’) “Year”
 FROM DUAL;

Answer (T-SQL):

 SELECT DATEPART (year, ‘2017/04/03’) AS Year;

Answer (MySQL):

 SELECT EXTRACT (YEAR FROM DATE ‘2017-04-03’) As Year;

Figure 8.31 Query output for EXTRACT function

Oracle SQL T-SQL MySQL

Figure 8.32 Query output for CURRENT_DATE function

Oracle SQL T-SQL MySQL

CURRENT_DATE – Oracle

GETDATE () – T-SQL
CURRENT_DATE () – MySQL

Question 20: Write a query to display the current date.

Answer (Oracle):

 SELECT CURRENT_DATE
 FROM dual;

Answer (T-SQL):

 SELECT GETDATE() AS Date;

Answer (MySQL):

 SELECT CURRENT_DATE();

116 Chapter 8 Functions

SYSDATE – Oracle

SYSDATETIME () – T-SQL

SYSDATE () – MySQL

Question 22: Write a query to display the system date.

Answer (Oracle):

 SELECT sysdate
 FROM dual;

Answer (T-SQL):

 SELECT sysdatetime();

MONTHS_BETWEEN () – Oracle
Style MONTHS_BETWEEN (date1, date2)

DATEDIFF () – T-SQL
Style DATEDIFF (month, date1, date2)

PERIOD_DIFF () – MySQL
Style PERIOD_DIFF(date1, date2)

Question 21: Write a query to display the number of months between 12/31/2015 to
12/02/2016.

Answer (Oracle):

 SELECT MONTHS_BETWEEN
 (TO_DATE (‘12-02-2016’,’MM-DD-YYYY’), TO_DATE (‘12-31-2015’,’MM-
 DD-YYYY’)) AS Month
 FROM dual ;

Answer (T-SQL):

 SELECT DATEDIFF (month, ‘12-31-2015’, ‘12-02-2016’) as Month

Answer (MySQL):

 SELECT PERIOD_DIFF (‘201612’, ‘201512’) as Months

Oracle SQL T-SQL MySQL

Figure 8.33 Query output for MONTH_BETWEEN function

Chapter 8 Functions 117

Figure 8.34 Query output for SYSDATE function

Oracle SQL T-SQL MySQL

Answer (MySQL):

 SELECT sysdate ();

Conversion Functions

Table 8.4 Conversion Functions

Oracle SQL T-SQL MySQL

CAST () CAST () CAST ()

TO_DATE () CONVERT () STR_TO_DATE ()

CAST ()

Description: converts an expression from one datatype to another datatype.

Syntax CAST (expression AS data_type)

Question 23: Write a query to change 356.78 to an integer number.

Answer (Oracle):

 SELECT CAST (356.78 as int)
 FROM dual;

Answer (T-SQL):

 SELECT CAST (356.78 AS int) AS CAST;

Answer (MySQL):

 SELECT CAST(356.78 SIGNED INTEGER);

Figure 8.35 Query output for CAST function

Oracle SQL T-SQL MySQL

118 Chapter 8 Functions

TO_DATE () – Oracle

Style TO_DATE (string, format)

Oracle To_Date function format is listed in the table below.

Table 8.5 Oracle To-Date format

Format Description

YYYY 4-digit year

YY 2-digit year

MON January–December

MM 1–12

DY Sun–Sat

DD 0–23

HH24 1–31

HH or HH12 1–12

MI 0–59

SS 0–59

Example 1: SELECT TO_DATE(‘2016/10/25’, ‘YYYY/MM/DD’)
 FROM dual;

Figure 8.36 Query output for Oracle To_Date function

Example 2: SELECT TO_DATE(‘20161026’, ‘YYYYMMDD’)
 FROM dual;

Figure 8.37 Query output for Oracle To_Date function example 2

Chapter 8 Functions 119

CONVERT () – T-SQL

Style CONVERT (data_type, expression, style)

T-SQL date conversion styles and samples are listed below:

Table 8.6 T-SQL CONCERT() function styles

Style Number Sample

101 12/16/2016

102 2016.12.16

103 16/12/2016

104 16.12.2016

105 16-12-2016

106 16 Dec 2016

DATE YYYY-MM-DD

DATETIME YYYY-MM-DD HH:MI:SS

T-SQL Date Conversion Examples:

Example 1: SELECT CONVERT (varchar, getdate ()) AS Date;

Figure 8.38 Query output for CONERT example 1

Example 2: SELECT CONVERT (varchar, getdate (), 101) AS Date;

Figure 8.39 Query output for CONERT example 2

Example 3: SELECT CONVERT (varchar, getdate (), 106) AS Date;

Figure 8.40 Query output for CONERT example 3

120 Chapter 8 Functions

STR_TO_DATE () – MySQL

Style STR_TO_DATE (String, Format);

MySQL date conversion formats are listed below:

Format Description

%Y 4-digit year

%y 2-digit year

%b Abbreviated month (Jan–Dec)

%M Month name (January–December)

%m Month (0–12)

%a Abbreviated day (Sun–Sat)

%d Day (0–31)

%H Hour (0–23)

%h Hour (01–12)

%i Minutes (0–59)

%s Seconds (0–59)

Example 1: SELECT STR_TO_DATE(‘May 01 2017’, ‘%M %d %Y’) AS date;

Figure 8.41 Query output for STR_TO_DATE function example 1

Example 2: SELECT STR_TO_DATE(‘2016,5,20 04,20,35’, ‘%Y, %m, %d %h,%i, %s’) AS date;

Figure 8.42 Query output for STR_TO_DATE function example 2

Summary

Chapter 8 covers the following:

	 •	 Understanding	common	number	functions.
	 •	 Using	common	character	functions
	 •	 How	to	use	common	date	and	time	functions
	 •	 Using	conversion	functions

Chapter 8 Functions 121

Exercises

8.1

Write a query to display the year portion of the system date.

8.2

Write a query to display rounded 682.3547 to two digits after decimal points.

8.3

Write a query to display the 8th through 10th characters of the string “Oracle SQL
Developer”.

Chapter 9

Advanced SQL

In this chapter, you will learn how to use the following SQL commands:

 1. Union, Union All
 2. inTERSECT (Oracle and T-SQL), in (MySQL)
 3. ExCEpT (T-SQL), MinUS (Oracle), noT in (MySQL)
 4. RoWnUM (Oracle), Top (T-SQL) and liMiT (MySQL)
 5. Subquery
 6. CASE
 7. SEqUEnCE (Oracle), idEnTiTy (T-SQL), AUTo_inCREMEnT (MySQL)

We will use Customers and Locations tables for sample data here.

Figure 9.1 Customers table

Figure 9.2 Locations table

Chapter 9 Advanced SQL 123

1. Union, Union All

description

Union: Returns a distinct list of rows from two tables.
Union All: Returns all rows from both tables.
Syntax
 SELECT column(s) FROM table1

 Union
 SELECT column(s) FROM table2
 SELECT column(s) FROM table1

 Union All
 SELECT column(s) FROM table2

Note: Each SELECT statement within the UNION must have the same number of columns.
The columns must also have similar data types. The columns in each SELECT statement
must be in the same order.

Question 1: Write a query to combine the distinct cities in Customers and Locations tables.

Answer:
 SELECT City
 FROM Customer
 Union
 SELECT City
 FROM Locations
 ORDER BY City;

Figure 9.3 Query output for question 1

oracle Sql T-Sql MySql

124 Chapter 9 Advanced SQL

Question 2: Write a query to combine the cities in Customer and Location table.

Answers:
 SELECT City
 FROM Customer
 Union All
 SELECT City
 FROM Locations
 ORDER BY City;

Figure 9.4 Query output for question 2

oracle Sql T-Sql MySql

2. inTERSECT (Oracle and T-SQL), in (MySQL)
description: Returns only rows that exist in both tables

Syntax

 SELECT column(s) FROM table1
 inTERSECT
 SELECT column(s) FROM tables

Use an intersect operator to returns rows that are common between two tables; it returns
unique rows that exist in both the first and second query. This operation is useful when you

Chapter 9 Advanced SQL 125

want to find results that are common between two queries. inTERSECT has an equivalent
MySQL statement in, which can also be used in Oracle and T-SQL.

Question 3: Write a query to find cities that exist in both Customer and Locations tables.

Answers (Oracle & T-SQL):
 SELECT City
 FROM Customer
 inTERSECT
 SELECT City
 FROM Locations;

Answer (MySQL):
 SELECT distinct City
 FROM customer
 WHERE (city) in
 (SELECT City
 FROM Locations)

Figure 9.5 Query output for question 3

oracle Sql T-Sql MySql

3. MinUS (Oracle), ExCEpT (T-SQL), noT in (MySQL)
description: Returns all rows in the first SELECT statement but excludes those by the
second SELECT statement.

Syntax

 SELECT col1, col2, …
 FROM table1
 MinUS or ExCEpT
 SELECT col1, col2, …
 FROM table2

Like INTERSECTION, EXCEPT (MINUS) has an equivalent MySQL statement noT in,
which can also be used in Oracle and T-SQL.

Question 4: Write a query to find cities that exist in Locations table but not in Customer
table.

126 Chapter 9 Advanced SQL

4. RoWnUM (Oracle), Top (T-SQL) and liMiT (MySQL)
description: Specifies the number of records to return

oracle Style SELECT column_name(s)
 FROM table_name
 WHERE RoWnUM <= number;

T-Sql Style SELECT Top number|percent column_name(s)
 FROM table_name;

MySql Style SELECT column_name(s)
 FROM table_name
 liMiT number;

ROWNUM is a special virtual column in an Oracle Database that gets many people into
trouble. When you learn what it is and how it works, however, it can be very useful.
ROWNUM is available in a query, but is not part of the table. ROWNUM will be assigned
the numbers 1, 2, 3, 4, ... N, where N is the number of rows record set. ROWNUM can be

Table 9.1 Answers for the question

oracle Sql T-Sql MySql

SELECT City
FROM Locations
MinUS
SELECT City
FROM Customer;

SELECT City
FROM Locations
ExCEpT
SELECT City
FROM Customer;

SELECT distinct City
FROM Locations
WHERE (city)
noT in (SELECT City
FROM Customer)

Figure 9.6 Query output for question 4

oracle Sql T-Sql MySql

Answers: See Table 9.1.

Chapter 9 Advanced SQL 127

used as part of the where clause of the query to return specific rows. ROWNUM value is
not assigned permanently to a row (this is a common misconception). Queries that use
< (less than) or > (greater than) on ROWNUM will not always work; you must use <= (less
than or equal to) or >= (greater than or equal to).
For example,

 SELECT RoWnUM, firstname
 FROM customer;

Figure 9.7 Query output for ROWNUM example

Questions 5: Display the first ten rows from the Country table.

Answers (Oracle):
 SELECT *
 FROM Country
 WHERE RoWnUM <= 10;

Figure 9.8 Query output for question 5 (Oracle)

128 Chapter 9 Advanced SQL

Answers (MySQL):

 SELECT *
 FROM Country liMiT 10;

Figure 9.10 Query output for question 5 (MySQL)

5. Subquery

description: A Subquery is a SQL query nested inside a larger query. Subqueries should
be placed within parenthesis. Subqueries can appear in the SELECT, FROM or WHERE
clauses of the main query and create temporary virtual tables usable by the main query.

Figure 9.9 Query output for question 5 (T-SQL)

Answers (T-SQL):

 SELECT Top 10 *
 FROM Country;

Chapter 9 Advanced SQL 129

Style SELECT column(s)
 FROM table1
 WHERE value IN
 (SElECT column-name
 FRoM table2
 WHERE condition)

Question 6: Write a query to find the employees whose salary is greater than the average
salary.

Answer: SELECT first_name, last_name, dept_ID, salary
 FROM employees
 WHERE salary >
 (SElECT AVG(salary)
 FRoM employees);

Oracle output

T-SQL output

MySQL output

Figure 9.11 Query output for questions 6

130 Chapter 9 Advanced SQL

Question 7: Write a query to find the employees who works in the Sales department.

Answer:
 SELECT Employee_ID, First_Name, Last_Name, Dept_ID
 FROM employees
 WHERE dept_id IN
 (SElECT dept_id
 FRoM departments
 WHERE dept_name=’Sales’);

Figure 9.12 Query output for question 7

Oracle output

T-SQL output

MySQL output

6. CASE

description: the CASE statement has the functionality of an IF-THEN-ELSE statement.

Syntax 1

 CASE
 WHEn condition_1 THEN result_1
 WHEn condition_2 THEN result_2 ...
 WHEn condition_n THEN result_n
 ElSE result
 End

Chapter 9 Advanced SQL 131

Syntax 2

 CASE expression
 WHEn value_1 THEN result_1
 WHEn value_2 THEN result_2 ...
 WHEn value_n THEN result_n
 ElSE result
 End

The CASE statement always goes in the SELECT clause. CASE must include the following
components: WHEN, THEN, and END. ELSE is an optional component.
You can make any conditional statement using any conditional operator (like WHERE)
between WHEN and THEN. This includes stringing together multiple conditional
statements using AND and OR.
You can include multiple WHEN statements, as well as an ELSE statement to deal with any
unaddressed conditions.

CASE Syntax 1 Example:
 SELECT dept_name,
 CASE
 WHEn location_id = 1400
 OR location_id = 1500
 OR location_id = 1700
 OR location_id = 2500
 OR location_id = 2700 THEN ‘USA’
 WHEn location_id = 1800 THEN ‘Canada’
 WHEn location_id = 2400 THEN ‘UK’
 End “location”
 FROM Departments;

CASE Style 2 Example:
 SELECT dept_name,
 CASE location_id
 WHEn 1400 THEN ‘USA’
 WHEn 1500 THEN ‘USA’
 WHEn 1700 THEN ‘USA’
 WHEn 2500 THEN ‘USA’
 WHEn 2700 THEN ‘USA’
 WHEn 1800 THEN ‘Canada’
 WHEn 2400 THEN ‘UK’
 End “LOCATION”
 FROM Departments;

132 Chapter 9 Advanced SQL

7. SEqUEnCE (Oracle), idEnTiTy (T-SQL), AUTo_inCREMEnT (MySQL)
description: We would like the value of the primary key field to be created automatically
every time a new record is inserted.

oracle Style

 CREATE SEqUEnCE sequence_name
 [START WiTH start_num]
 [inCREMEnT By increment_num]

T-Sql Style

 idEnTiTy (seed, increment)
 seed - the initial number
 increment - the interval

MySql Style

 AUTo_inCREMEnT: By default, the beginning value is 1, and it will
 increment by 1 for each new record.

oracle SEqUEnCE Example

Step 1—Create a SEQUENCE called seq_customer that starts from 100. Every time we
insert a record the seq_customer.NEXTVAL generates a new value starts from 100:

 CREATE SEqUEnCE seq_customer START WITH 100;

Figure 9.13 Query output for CASE Examples

oracle Sql T-Sql MySql

Chapter 9 Advanced SQL 133

Figure 9.14 CREATE SEQUENCE in Oracle

Step 2—Insert a customer “Jason Brown” to the customer table. The seq_customer.
NEXTVAL generates a new value starts from 100:

 INSERT INTO customer (id, FirstName, LastName)
 VALUES (seq_customer.nExTVAl, ‘Jason’,’Brown’);

Figure 9.15 A customer record is inserted

134 Chapter 9 Advanced SQL

T-Sql indEnTiTy Example

Step 1—Create a table called STATE and set the initial number 1 and the interval value 1.

 Create Table STATE
 (
 ID int NOT NULL idEnTiTy(1, 1),
 StateName varchar(30)
)

 Figure 9.16 The STATE table (SQL Server)

Figure 9.17 Step 3 query output

Step 2—Insert two states to the table. It is not necessary to insert IDs as INDENTIY will
automatically create IDs one by one.

 INSERT INTO STATE (StateName) VALUES (‘Utah’);
 INSERT INTO STATE (StateName) VALUES (‘Maryland’);

Step 3—Check the result.

 SELECT * FROM STATE

Chapter 9 Advanced SQL 135

MySql AUTo_inCREMEnT Example

Step 1—Create a table called STATE with a primary key AUTO_INCREMENT. The initial
number and the interval value are 1 by default.

 Create Table STATE
 (
 ID int NOT NULL Primary Key AUTo_inCREMEnT,
 StateName varchar(30)
)

Figure 9.18 The STATE table (MySQL)

To set the AUTO_INCREMENT with another starting value, use the following SQL
statement:

 ALTER TABLE STATE AUTO_INCREMENT=50;

Step 2—Insert two states to the table. It is not necessary to insert IDs as AUTO_INCREMENT
will create IDs.

 INSERT INTO STATE (StateName) VALUES (‘Utah’);
 INSERT INTO STATE (StateName) VALUES (‘Maryland’);

Step 3—Check the result.

 SELECT * FROM STATE;

Figure 9.19 Step 3 query output (MySQL)

136 Chapter 9 Advanced SQL

Summary

Chapter 9 covers the following:

	 •	 Manipulating	Union,	Union	All	commands
	 •	 Using	INTERSECT	(Oracle	and	T-SQL)	and	IN	(MySQL)	commands
	 •	 How	to	use	Except	(T-SQL),	MINUS	(Oracle)	and	NOT	IN	(MySQL)	commands	
	 •	 Understanding	ROWNUM	(Oracle),	TOP	(T-SQL)	and	LIMIT	(MySQL)	commands
	 •	 Defining	Subquery
	 •	 Understanding	Case	command
	 •	 Using	Sequence	(Oracle),	Identity	(T-SQL)	and	Auto_Increment	(MySQL)	to	generate	

sequence numbers.

Exercises

9.1

Write a query to combine the names in the customers table with the names in the employees
table.

9.2

Modify the query in 9-1 to sort the results by last name.

Chapter 10

Joins

In relational database design Employee and Department are two entities. Employee
related data is saved to the Employees table while department related data is saved to the
Departments table. For linking purpose the Department_ID is created between the two
tables.
If we want to display employee names and department names it is not possible to only
use the Employees table or the Departments table. To list the department names after the
employee names we need to use SQL JOIN.
There are four basic SQL joins: (Inner) Join, Left Join, Right Join, and Full Join. The most
useful join is (Inner) Join.

Table 10.1 Common Join types

(INNER) JOIN Get records that have matching values in both tables.

LEFT JOIN Get all records from the table1 (LEFT table1) and the matched records from the
table2 (RIGHT table2). If no match the result is NULL from the table2.

RIGHT JOIN Get all records from the table2 (RIGHT table1) and the matched records from
the table1 (LEFT table2). If no match the result is NULL from the table1.

FULL JOIN Get all the rows from both the table1 and table2.

Syntax

 SELECT table1.col_name, table2.col_name
 FROM table1
 (INNER) JOIN table2 ON table1.col_name = table2.col_name;

 SELECT table1.col_name, table2.col_name
 FROM table1
 LEFT JOIN table2 ON table1.col_name = table2.col_name;

 SELECT table1.col_name, table2.col_name
 FROM table1
 RIGHT JOIN table2 ON table1.col_name = table2.col_name;

 SELECT table1.col_name, table2.col_name
 FROM table1
 FULL JOIN table2 ON table1.col_name = table2.col_name;

138 Chapter 10 Joins

Older JOIN Syntax

 SELECT table1.col_name, table2.col_name
 FROM table1, table2
 WHERE table1.col_name = table2.col_name;

JOIN with USING clause (Oracle)
Syntax SELECT table1.col_name, table2.col_name
 FROM table1
 JOIN table2 USING (join_col_name);

Let’s use the Employees, the Departments and the Locations tables for JOIN examples.

Figure 10.1 Employees Table

Figure 10.2 Departments Table

Chapter 10 Joins 139

Figure 10.3 Locations Table

Question 1: Write a query in SQL to display the employee names and department name for
all employees in department 40.

Answer: SELECT E.first_name, E.last_name, D.dept_name
 FROM employees E
 JOIN departments D
 ON E.dept_id = 40 AND E.dept_id = D.dept_id;

Figure 10.4 Query output for question 1

Oracle SQL T-SQL MySQL

Using Older JOIN Style

 SELECT E.first_name, E.last_name, D.dept_name
 FROM employees E, departments D
 Where E.dept_id = 40 AND E.dept_id = D.dept_id;

Figure 10.5 Query output for question 1 (Old JOIN style)

Oracle SQL T-SQL MySQL

140 Chapter 10 Joins

Question 2: Write a query in SQL to display the full name of the employees and the
department names.

Answer (Oracle):

 SELECT first_name || ‘ ‘ || last_name AS Full_Name, Dept_Name
 FROM employees E
 JOIN departments D
 ON (E.Dept_ID = D.Dept_id);

 SELECT first_name || ‘ ‘ || last_name AS Full_Name, Dept_Name
 FROM employees E
 JOIN departments D
 USING (Dept_ID);

Answer (T-SQL):

 SELECT first_name + ‘ ‘ + last_name AS Full_Name, Dept_Name
 FROM employees E
 JOIN departments D
 ON (E.Dept_ID = D.Dept_id);

Answer (MySQL):

 SELECT CONCAT(first_name, ‘ ‘, last_name) AS Full_Name, Dept_Name
 FROM employees E
 JOIN departments D
 ON (E.Dept_ID = D.Dept_id);

Figure 10.6 Query output for question 2

Oracle SQL T-SQL MySQL

Chapter 10 Joins 141

JOINING More Than Two Tables

Question 3: Write a query in SQL to display the full name of the employees who working
in any department located in Seattle.

Answer (Oracle):

 SELECT first_name || ‘ ‘ || last_name AS Full_name, Dept_Name
 FROM employees E
 JOIN departments D
 ON E.Dept_ID = D.Dept_ID
 JOIN locations L
 ON (D.location_ID = L.location_id)
 WHERE city = ‘Seattle’;

Figure 10.7 Query output for question 3 (Oracle)

Figure 10.8 Query output for question 3 (T-SQL)

Answer (T-SQL):

 SELECT first_name + ‘ ‘ + last_name AS Full_name, Dept_Name
 FROM employees E
 JOIN departments D
 ON E.Dept_ID = D.Dept_ID
 JOIN locations L
 ON (D.location_ID = L.location_id)
 WHERE city = ‘Seattle’;

142 Chapter 10 Joins

Answer (MySQL):

 SELECT CONCAT(first_name, ‘ ‘, last_name) AS Full_Name, Dept_Name
 FROM employees E
 JOIN departments D
 ON E.Dept_ID = D.Dept_ID
 JOIN locations L
 ON (D.location_ID = L.location_id)
 WHERE city = ‘Seattle’;

Figure 10.9 Query output for question 3 (MySQL)

LEFT JOIN

Suppose that we have the following order table and customer table:

Figure 10.10 Order table

Figure 10.11 Customer table

From the order table you can see that customer No. 4 does not place any order.

Chapter 10 Joins 143

Question 4: Write a query to display customer name, order amount and order date. List all
the customer who have made or have not made orders.

Answer (Oracle & MySQL):

 SELECT C.ID, FirstName, O.Amount, O.Order_DATE
 FROM Customer C
 LEFT JOIN Orders O
 ON C.ID = O.Customer_ID;

Figure 10.12 Query output for question 4 (Left: Oracle, Right: MySQL)

Figure 10.13 Query output for question 4 (T-SQL)

Answer (T-SQL):

 SELECT C.ID, FirstName, O.Amount, O.Order_DATE
 FROM Customer C
 LEFT JOIN Orders O
 ON C.ID = O.Customer_ID
 Order BY FirstName;

The first table (LEFT) is the Customer table. Left Join will display all the records from the
Customer (LEFT) table. If no match (for customers who do not make orders) the result is
NULL from the Order (RIGHT) table. In this case customer No. 4 Paolo’s record has null
value in Amount and Order_Date fields.
RIGHT JOIN and FULL JOIN are not used very often so we are not going to list samples
here.

144 Chapter 10 Joins

Recommended SQL Writing Style

1. Using upper case letters for SQL keywords.

For example, which style is easy to read for the following statements?

 Select c.id, firstname, o.amount, o.order_date
 from customer c
 left join orders o
 on c.id = o.customer_id order by firstname;

 SELECT C.ID, FirstName, O.Amount, O.Order_DATE
 FROM Customer C
 LEFT JOIN Orders O
 ON C.ID = O.Customer_ID Order BY FirstName;

2. Using multiple lines for longer statements.

For example, which style is easy to read for the following statements?

 Select c.id, firstname, o.amount, o.order_date from customer c left join
 orders o
 on c.id = o.customer_id order by firstname;

 SELECT C.ID, FirstName, O.Amount, O.Order_DATE
 FROM Customer C
 LEFT JOIN Orders O
 ON C.ID = O.Customer_ID Order BY FirstName;

3. Using a semicolon to end a statement.

Oracle requires a semicolon at the end of a statement. Although T-SQL and MySQL do not
require a semicolon to end a statement, it’s recommended to use semicolons at the end of
statements.

4. Using comments.

Comment on a single line: /* Comments */
 -- Comments

Comment on multiple lines: /*
 * Comments
 * Comments
 */

Summary

Chapter 10 covers the following:

	 •	 How	to	join	tables	using	Inner	Join.
	 •	 How	to	use	join	with	using	clause	in	Oracle.
	 •	 How	to	join	more	than	two	tables.
	 •	 How	to	join	tables	using	Left	Join.

Chapter 10 Joins 145

Exercises

10.1

Write a query to display number of employees in the department.

10.2

Write a query to display department name and city name.

10.3

Write a query to display employee name and country where he works.

Chapter 11

Views

A view is a virtual table. It looks like a table. A view is created in a SQL statement using
one or more tables (views). Because views do not store data they only take small amount
of disk space. Views can contains certain fields from a table. A Database administrator can
create a view for non-sensitive data and set permission for the view to users.

Syntax
 CREATE VIEW view_name AS
 SELECT column(s)
 FROM tables
 [WHERE conditions];

Creating Views in Oracle

Since the Scott account does not have privilege to create a view, we will use the Oracle HR
schema to create a view.

Step 1: Go to Command Prompt, type:
 C: \> sqlplus / as sysdba

At SQL prompt, type:
 Alter user hr IDENTIFIED by hr account unlock;

Chapter 11 Views 147

Step 2: Connect the HR schema with username and the password:

Figure 11.2 Oracle database connection

Figure 11.1 Unlock hr account in Oracle

This command will unlock the HR account with password “hr”.

148 Chapter 11 Views

Step 3: Enter the Create View code on the SQL worksheet:

 CREATE VIEW Location_US AS
 Select Location_ID, City, State_Province
 From Locations
 Where Country_ID = ‘US’;

Figure 11.3 Creating a view

Figure 11.4 The view is created

Step 4: Run the query to create the view then reconnect to HR schema:

Chapter 11 Views 149

Step 5: Check the result of the view:

Figure 11.5 Executing the view

Creating Views in T-SQL

Step 1: Enter the Create View commands and run the query by click the Execute button.

Figure 11.6 Creating a view

150 Chapter 11 Views

Step 2: Refresh the HR schema to see the view dbo.Location_US.

Figure 11.7 The view is created

Step 3: Right click the view and choose “Select Top 1000 Rows”:

Figure 11.8 Executing a view

Chapter 11 Views 151

Step 4: Check the result of the view:

Figure 11.9 Output from the view

Creating Views in MySQL

Step 1: Enter the Create View commands and run the query by click the Execute button:

Figure 11.10 Creating a view

152 Chapter 11 Views

Figure 11.11 The view is created

Step 2: Refresh the HR schema:

Step 3: Clicking the icon next to “location_us”:

Figure 11.12 Executing the view

Figure 11.13 Output from the view

Step 4: Check the result from the view.

Chapter 11 Views 153

Updating Views

Syntax (Oracle)

 CREATE OR REPLACE VIEW view_name AS
 SELECT column(s)
 FROM tables
 [WHERE conditions];

Syntax (T-SQL & MySQL)

 ALTER VIEW view_name AS
 SELECT column(s)
 FROM tables
 [WHERE conditions];

Example (Oracle):

 CREATE OR REPLACE VIEW
 Location_US AS
 SELECT Location_ID, City, Country_ID
 FROM Locations
 WHERE Country_ID = ‘US’;

Figure 11.14 Output for Oracle CREATE OR REPLACE VIEW (data from the original HR schema)

Figure 11.15 Output for T-SQL ALTER VIEW example

Example (T-SQL):

 ALTER VIEW Location_US AS
 SELECT Location_ID, City, Country_ID
 FROM Locations
 WHERE Country_ID = ‘US’;

154 Chapter 11 Views

Example (MySQL):

 ALTER VIEW view_name AS
 SELECT columns
 FROM Locations
 WHERE conditions ID = ‘US’;

Figure 11.16 Output for MySQL ALTER VIEW example

Deleting Views

Syntax (Oracle, T-SQL & MySQL)

 DROP VIEW view_name;

Example:

 DROP VIEW Location_US;

Summary

Chapter 11 covers the following:

	 •	 How	to	create	a	view	in	Oracle,	T-SQL	and	MySQL
	 •	 How	to	update	a	view	in	Oracle,	T-SQL	and	MySQL
	 •	 How	to	delete	a	view	in	Oracle,	T-SQL	and	MySQL

Exercises

11.1

Create a view named v_employees to display the names and salary fields from the
Employees table.

11.2

Drop the view.

Chapter 12

Data Import and Export

Data import and export are common tasks for developers or DBAs. Oracle, SQL Server
and MySQL provide simple data import and export wizards. We will export data from the
regions table then import the data using the exported csv file.

Oracle Data Export from Query Results

	 •	 First	select	data	that	you	want	to	export.	For	example,
	 SELECT	*	FROM	regions;
	 •	 Right	click	the	query	result	and	select	Export…

Figure 12.1	 Exporting	query	result

156 Chapter 12 Data Import and Export

	 •	 The	Export	Wizard	step	1	of	2	screen	shows	up.

Figure 12.2 Export wizard

Figure 12.3 Export format

	 •	 In	the	Export	Wizard	change	the	Format	to	CSV	and	Encoding	to	UFT-8.	Save	the	file	
as regions.csv.

Chapter 12 Data Import and Export 157

	 •	 Click	Next	to	see	the	summary	page.

Figure 12.4 Summary

	 •	 Open	the	regions.csv to see the exported data.

Figure 12.5 Checking the exported file

SQL Server Export Data from Query Results

	 •	 Let	us	select	the	data	that	we	want	to	export	in	query	worksheet:
	 SELECT	*	FROM	regions;
	 •	 Run	the	query	and	see	the	result.

158	 Chapter 12 Data Import and Export

Figure 12.6	 Running	a	query

	 •	 Right	click	the	query	result	and	select	Save Results As…

Figure 12.7	 Saving	query	result

Chapter 12 Data Import and Export 159

	 •	 Enter	region.csv	in	the	File	name	field.

Figure 12.8 Export file name

	 •	 Open	the	regions.csv to see the exported data.

Figure 12.9 Checking the exported file

MySQL Export Data from Query Results

	 •	 Enter	the	following	statement	in	query	worksheet:
	 SELECT	*	FROM	regions;
	 •	 Run	the	query	and	see	the	output.

160 Chapter 12 Data Import and Export

Figure 12.10	 Executing	a	query

	 •	 Click	the	Export icon.

Figure 12.11	 Export	query	result

Chapter 12 Data Import and Export 161

	 •	 Enter	Regions.csv	in	the	File	name	field.

Figure 12.12 Entering the file name

	 •	 Open	the	Regions.csv to see the exported data.

Figure 12.13 Checking the exported file

Oracle Data Import Tool

You	have	learned	INSERT	INTO	statements	in	Chapter	6.	It	 is	used	for	inserting	one	or	
multiple	records.	For	large	amount	of	data	we	can	use	import	wizard	to	insert	data.

162 Chapter 12 Data Import and Export

	 •	 Before	inserting	data	we	should	prepare	a	table	with	corresponding	data	types	in	the	
data	file.	For	demo	purpose	we	just	first	delete	records	in	the	Regions	table	then	import	
data from the regions.csv file.

	 •	 Enter	the	following	statement:
	 DELETE	FROM	regions;

Figure 12.14 Deleting records in a table

	 •	 Then	check	the	Regions	table	with	the	following	statement:
	 SELECT	*	FROM	regions;

Figure 12.15	 No	data	in	Regions	table	after	DELETE	command

Chapter 12 Data Import and Export 163

	 •	 Right	click	the	Regions	table	and	select	Import Data…

Figure 12.16 Starting importing data

	 •	 Select	the	region.csv file that we have exported.

Figure 12.17 Opening the original file

164 Chapter 12 Data Import and Export

	 •	 Follow	the	Data	Import	Wizard	steps.

Figure 12.18 Selecting import method

Figure 12.19 Columns in the file

	 •	 Click	the	Next button.

Chapter 12 Data Import and Export 165

	 •	 Follow	the	steps.

Figure 12.20 Comparing source and target data columns

	 •	 A	message	shows	that	the	import	data	task	is	completed.	Click	Finish button on the
next step.

Figure 12.21 Import task is done

166 Chapter 12 Data Import and Export

SQL Server Data Import Tools

Available	tools	to	import	data	in	SQL	Server	are:
	 1.	 Using	a	load	script
	 2.	 Using	data	import	wizard

1. Using a Load Script

	 •	 Create	a	text	file	and	save	it	as	hr.sql:

/* ********************************* */
drop	table	Country;
drop	table	Departments;
drop	table	Employees;
drop	table	Job;
drop	table	Locations;
drop	table	Regions;

CREATE	TABLE	Country
(
	 country_id	 CHAR	(2)
	 	 NOT	NULL,
	 country_name	 VARCHAR(40),	
 region_id smallint,
	 PRIMARY	KEY	(country_ID),
	 CONSTRAINT	FK_RegCountry
	 FOREIGNKEY	(region_id)
REFERENCES	Regions(Regins_ID)
);

CREATE	TABLE	Departments
(
… /* see codes in Chapter 5 */
);

CREATE	TABLE	Employees
(
…
);

CREATE	TABLE	Job
(
…
);

Chapter 12 Data Import and Export 167

CREATE	TABLE	Locations
(
…
);

CREATE	TABLE	Regions
(
…
);

INSERT	INTO	COUNTRY	VALUES	(‘AR’,’Argentina’,2);
… /* see codes in Chapter 6 */

INSERT	INTO	Employees	
VALUES	 (100, ‘Douglas’ , ‘Grant’ , ‘DGRANT’, ‘650.507.9844’ , ‘23-Jan-08’ , ‘SH_
CLERK’,2600,114,50);
…

INSERT	INTO	DEPARTMENTS	VALUES	(10,‘Administration’,200,1700);
…

INSERT	INTO	Job	VALUES	(‘AD_PRES’,‘CEO’,9000,20000);
…

INSERT	INTO	Locations
VALUES	(1300,‘9450	Kamiya-cho’,‘6823’,‘Hiroshima’,’’,’JP’);
…

INSERT	INTO	REGIONS	VALUES	(1,‘Europe’);
…
/* ********************************* */

	 •	 Select	the	whole	script	and	copy	it	to	query	worksheet.	Run	the	script	by	clicking	the	
Execute button.

2. Using data import wizard

	 •	 Enter	the	following	statement	and	execute	it:
	 DELETE	FROM	regions;

	 •	 Check	the	Regions	table	with	the	following	statement:
	 SELECT	*	FROM	regions;

168	 Chapter 12 Data Import and Export

Figure 12.22	 No	data	in	the	Regions	table	after	DELETE	command

	 •	 Right	click	a	schema	where	you	want	to	insert	the	data.

	 •	 Choose	Task -> Import Data…

Figure 12.23 Starting import data

Chapter 12 Data Import and Export 169

	 •	 In	the	Data	source	field	select Flat File Source then select the region.csv file.

Figure 12.24 Selecting import file

Figure 12.25 Choosing a data source

	 •	 Follow	the	steps	for	SQL	Server	Import	and	Export	Wizard.

170 Chapter 12 Data Import and Export

	 •	 Choose	Destination	as SQL Server Native Client 11.0

Figure 12.26 Choosing a destination

	 •	 Check	the	wizard	summary	page	and	click Finish.

Figure 12.27 Summary page

Chapter 12 Data Import and Export 171

	 •	 The	data	is	imported	successfully	to	Regions	table.

Figure 12.28 Importing successfully message

MySQL Data Import Tool

	 •	 Enter	the	following	commands:
	 use	hr;
	 DELETE	FROM	regions;
	 SELECT	*	FROM	regions;

Figure 12.29 No	data	in	Regions	table	after	DELETE	command

172 Chapter 12 Data Import and Export

	 •	 Right	click	the	regions	table	and	choose	Table Data Import Wizard.

Figure 12.30 Starting data import

Figure 12.31	 File	path	for	the	csv	file

	 •	 Select	Regions.csv	in	the	File	Path	field.

Chapter 12 Data Import and Export 173

	 •	 You	can	choose	existing	table	or	create	a	new	table.

Figure 12.32 Selecting destination

	 •	 The	wizard	will	set	the	Encoding	UTF-8	and	match	source	and	destination	columns.

Figure 12.33 Source and destination columns

174 Chapter 12 Data Import and Export

Summary

Chapter	12	covers	the	following:

	 •	 Exporting	Oracle	data	from	a	query	result
	 •	 Exporting	SQL	Server	data	from	a	query	result
	 •	 Exporting	MySQL	data	from	a	query	result.	
	 •	 How	to	import	data	to	an	Oracle	table.
	 •	 How	to	import	data	to	a	SQL	Server	table.	
	 •	 Using	a	load	script	for	SQL	Server	data	import.
	 •	 How	to	import	data	to	a	MySQL	table.

Exercise

12.1

Export records in Employees table to a csv file. Create a new table or delete the records in
the	Employees	table.	Using	the	csv	file	to	import	data	to	the	table.

Chapter 13

 Stored Procedures

What is a Stored Procedure

When you create a useful query in your working place it’s very possible that you need
to run that query again. For example, you may need to run a monthly sales report
automatically at the beginning of a month. Stored procedures can do that job for you.
You can save the query in a stored procedure and schedule a task to run the job automatically.
A stored procedure usually has three parts:

	 •	 Declaration	
	 •	 Execution	
	 •	 Exception	(Optional)

A Simple Stored Procedure

Syntax:

CREATE	[OR	REPLACE]	PROCEDURE	proc_name	[(parameter1,	parameter2	…)]
IS	|	AS	(Oracle)
AS	(SQL	Server)
	[declaration	part]

BEGIN
 executable part

[EXCEPTION]
 exception part

END;

Let	us	create	a	stored	procedure	to	count	row	numbers	in	the	regions	table.	There	is	no	
input parameters and output values.

Steps to Create an Oracle Stored Procedure

	 •	 Enter	SQL	code	in	the	query	editor.
	 •	 Run	the	code	to	create	a	stored	procedure.
	 •	 Enter	EXEC	proc_name	to	run	the	stored	procedure.

176 Chapter 13 Stored Procedures

	 •	 To	 display	 message	 you	 need	 to	 SET SERVEROUPUT ON and using
dbms_output.put_line().

Table 13.1 Comparison for a simple stored procedure

Oracle PL/SQL SQL SERVER T-SQL MySQL

SET	SERVEROUTPUT	ON;

CREATE	or	REPLACE	
procedure p1
IS
				num	INT;
BEGIN
		SELECT	count(*)	INTO	num	
		FROM	regions;						
dbms_output.put_line(num);
END;

EXEC	p1;

CREATE	procedure	p1
AS
BEGIN
		DECLARE	@num	INT;

		SET	NOCOUNT	ON;
		SELECT	@num	=	count(*)	
		FROM	regions;
		PRINT	@num;
END;

EXEC	p1;

DELIMITER	//

CREATE	procedure	p1()
BEGIN
					SELECT	count(*)	
					FROM	regions;
END;
//

CALL	p1();

Figure 13.1	 A	simple	Oracle	procedure	

Steps to Create a SQL Server Stored Procedure

	 •	 Enter	SQL	code	in	the	query	editor.
	 •	 Run	the	code	to	create	a	stored	procedure.
	 •	 Delare	valable(s)	under	BEGIN keyword.
	 •	 Enter	EXEC	proc_name	to	run	the	stored	procedure.
	 •	 Using	SET NOCOUNT ON.

Chapter 13 Stored Procedures 177

Figure 13.2 A	simple	SQL	Server	procedure	

Steps to Create a MySQL Stored Procedure

	 •	 Create	a	delimiter	like	//	or	$$.	The	delimiter	is	characters	that	is	used	to	complete	an	
SQL	statement.

	 •	 Enter	SQL	code	in	the	query	editor.
	 •	 Run	the	code	to	create	a	stored	procedure.
	 •	 Enter	CALL	proc_name()	to	run	the	stored	procedure.

Figure 13.3	 A	simple	MySQL	procedure

178 Chapter 13 Stored Procedures

A Stored Procedure with Parameters

Oracle	Parameters

	 •	 IN	(optional)—To	pass	value(s)	to	a	stored	procedure.	The	values	are	not	changed	in	
the	procedure.	IN	keyword	is	optional.

	 •	 OUT—To	get	value(s)	 from	a	stored	procedure.	The	value(s)	can	be	passed	to	OUT	
parameter(s)	inside	the	stored	procedure.	A	calling	program	is	needed	to	get	the	output	
value(s).

	 •	 IN	OUT—To	pass	and	get	value(s)	from	a	stored	procedure.

SQL	Server	Stored	Procedure	Parameters

	 •	 IN	(optional)
	 •	 OUT	|	OUTPUT

MySQL	Server	Stored	Procedure	Parameters

	 •	 IN	(optional)
	 •	 OUT

	 •	 INOUT

To Create an Oracle Stored Procedure with IN and OUT Parameters:

	 	 CREATE	or	REPLACE	procedure	get_Location_Info	
(L_ID	IN	NUMBER,
	L_City	OUT	VARCHAR2,
	L_Country_ID	OUT	CHAR
)

 AS
	 	 BEGIN

SELECT	City,	Country_ID	INTO	L_City,	L_Country_ID	FROM	LOCATIONS
WHERE	LOCATION_ID	=	L_ID;

	 	 END	get_Location_Info;

To Execute an Oracle Procedure with IN and OUT Parameters:

	 	 DECLARE
Location_City	LOCATIONS.CITY%TYPE;
Location_Country_ID	LOCATIONS.Country_ID%TYPE;

Chapter 13 Stored Procedures 179

	 	 BEGIN
	get_Location_Info	(1700,	Location_City,	Location_Country_ID);
	DBMS_OUTPUT.PUT_LINE	(Location_City	||	‘	’||	Location_Country_ID);

	 	 END;

Figure 13.4	 Calling	Oracle	procedure	with	IN	and	OUT	parameters

To Create an Oracle Stored Procedure with IN OUT Parameters:

create or replace
procedure	example_INOUT	(x	IN	OUT	NUMBER)
AS
BEGIN
	x	:=	x	+	6;
END	example_INOUT;

To Execute an Oracle Procedure with IN OUT Parameters:

DECLARE
	 x	number;
BEGIN
x:=	10;
example_INOUT	(x);
DBMS_OUTPUT.PUT_LINE	(‘x	is’	||	x);
END;

180	 Chapter 13 Stored Procedures

To Create a SQL Server Stored Procedure with IN Parameters:

CREATE	procedure	get_Location_Info
(@L_ID	FLOAT)

AS
BEGIN

	SET	NOCOUNT	ON;
SELECT	City,	Country_ID	FROM	LOCATIONS
WHERE	LOCATION_ID	=	@L_ID;

END;

Figure 13.5	 An	Oracle	procedure	with	IN	OUT	parameters

Figure 13.6	 Calling	Oracle	procedure	with	IN	OUT	parameters

Chapter 13 Stored Procedures 181

To Execute SQL Server Procedures with IN Parameters:

EXEC	get_Location_Info	1700;

Figure 13.7	 A	SQL	Server	procedure	with	parameters

To Create a MySQL Stored Procedure with IN and OUT Parameters:

DELIMITER	//

CREATE	procedure	get_Location_Info	
(@L_ID	FLOAT,
@L_CITY	VARCHAR	OUT,
@L_Country_ID	CHAR	OUT)

AS
BEGIN
SELECT	@L_City	=City,	@L_Country_ID	=	Country_ID	
FROM	LOCATIONS
WHERE	LOCATION_ID	=	@L_ID;

END;
//

182	 Chapter 13 Stored Procedures

To Execute a MySQL Procedure with IN and OUT Parameters:

CALL	get_Lo	cation_Info	(1700);

Figure 13.8	 A	MySQL	procedure	with	IN	and	OUT	parameters

Figure 13.9	 Calling	a	MySQL	procedure	with	IN	and	OUT	parameters

Summary

Chapter 13 covers the following:

	 •	 Basic	structures	of	a	stored	procedure
	 •	 Steps	to	create	a	stored	procedure	in	Oracle,	SQL	Server	and	MySQL
	 •	 A	simple	procedure	without	parameters	
	 •	 Steps	to	Create	a	stored	procedure	with	parameters	in	Oracle,	SQL	Server	and	MySQL

Chapter 13 Stored Procedures 183

	 •	 A	sample	stored	procedure	with	IN	and	OUT	parameters	
	 •	 A	sample	stored	procedure	with	IN	OUT	parameters	

Exercise

13.1

Create a stored procedure to list employees who work for shipping department.

http://taylorandfrancis.com

Index

A

ADD_MONTH () 113, 114
addition (+) 74
aggregate functions 89, 94, 97, 98
aliases 84
ALTER COLUMN 61, 62, 64
ALTER TABLE 60–64, 135
AND 77
ANSI 2
arithmetic operators 74, 76, 87
ASC (ascending order) 72
AVG () 89, 90, 94, 97, 98

B

BETWEEN 8, 9, 12, 79, 88, 113, 116, 124, 125, 131, 137
BIGINT data type 12
BINARY data type 11
BLOB data type 11

C

CASE 9, 88, 108, 112, 122, 130–132, 136, 143, 144
CAST () 117
CEILING () 98
char data type 11, 12, 14
character data type 11, 14
CHECK constraint 7
CLOB data type 11
columns 4–7, 11, 14, 42, 54–56, 61–64, 67, 72–74, 77–79,

81, 82, 84, 88–92, 94, 95, 101, 123, 124, 126, 129, 146,
153, 154, 164, 165, 173

 column aliases 84
command line 34, 36, 40, 46
comments 144
comparison operator 76, 87
CONCAT () 103–105
constraints 7, 52, 53, 166
conversion 117, 119, 120
CONVERT () 117, 119
COUNT () 89, 90, 95, 97, 98
CREATE DATABASE 46–48, 64, 87
CREATE TABLE 51–53, 55–57, 64, 134, 135, 166, 167
CREATE USER 48
CREATE VIEW 146, 148, 149, 151

D

Data Control Language (DCL) 47, 87
Data Definition Language (DDL) 47, 48, 65
Data Manipulation Language (DML) 47, 65, 87
data types 4, 11–14, 54–56, 117, 119, 123, 162
database administrators (DBAs) 1
date and time data type 13, 14
DATE_ADD () 113, 114
DATE_DIFF () 113, 116
DECIMAL 8, 12, 13, 53, 62, 63, 90, 101, 102, 106, 121
DELETE 4, 7, 47, 51, 60, 65, 77, 78, 86–88, 154, 162, 167,

168, 171, 174
DESC 72, 82, 83, 94
DISTINCT 73, 123, 125, 126
division (/) 74
DOUBLE data type 12
DROP TABLE 51, 60, 166
DROP VIEW 154

E

ENUM data type 11
Entity Relationship Diagram (ERD) 8, 10
Equals operator (=) 76
expression 74, 78–82, 98, 117, 119, 131
EXTRACT 111, 113–115

F

fields 5, 7, 12, 74, 109, 111, 114, 132, 143, 146, 154, 159,
161, 169, 172

fixed length 11, 12
FLOAT data type 4, 12
FLOOR () 98, 99
foreign keys 6–9, 52, 53
FORMAT () 103, 106
functions 84, 89–98, 101, 103, 105–120

G

GETDATE () 113, 115, 119,
GRANT 4, 47, 48, 65, 66, 87, 88, 167
greater than operator (>) 76
GROUP BY 89, 94–97

186 Index

H

HAVING clause 94, 97
history 1, 2, 10

I

IMAGE data type 11
IN condition 78
INNER JOIN 137, 144
INSERT INTO 47, 65–71, 85, 87, 133–135, 161, 167
installation 15, 16, 19–21, 26, 30, 32, 38, 40, 42, 43, 46, 49
INT data type 12
integrity 7
 Entity Integrity 7
 Referential Integrity 7
IS NULL 79, 80, 137, 143
IS NOT NULL 80

J

JOIN 137–144
 INNER JOIN 137, 144
 LEFT JOIN 137, 142–144
 RIGHT JOIN 137, 143
 FULL JOIN 137, 143

K

keys 9
 primary keys 9
 foreign keys 9

L

languages 1, 2, 4, 11, 17, 47, 65, 87
LEFT JOIN 137, 142–144
LEN () 103, 107
LENGTH () 103, 107
less than operator (<) 76
LIKE condition 81
LIMIT 122, 126, 128, 136, 176, 177, 181
LONGBLOB data type 11
LONGTEXT data type 11
LOWER () 103, 108
LTRIM () 103, 109

M

master database 42, 43
MAX () 90, 92, 97, 98
MEDIUMTEXT data type 11
Microsoft SQL Server 2
MIN () 90, 91, 97, 98
Minutes 114, 120
MONEY data type 12
Month 113, 114, 116, 120, 175
MONTH_BETWEEN () 116
multiplication (*) 74
MySQL Server 31, 37, 178

N

NCHAR data type 11
NOT IN 78, 122, 125, 126, 136
NOT NULL 7, 14, 52, 53, 80, 134, 135, 166
NTEXT 11
NULL 7, 14, 52, 53, 79, 80, 134, 135, 137, 143, 166
NUMBER data type 12, 14
numeric data type 12, 13
NVARCHAR data type 11

O

ON 87, 137, 139–144, 176, 180
OR 77
ORDER BY 72, 82, 83, 94, 95, 123, 124, 143, 144
operating system 15

P

PERIOD_DIFF () 113, 116
POWER () 101
primary key 6–9, 52, 53, 132, 135, 166
privileges 47, 48, 87, 146
 GRANT 47, 48, 87
 REVOKE 47, 87

Q

query worksheet 40, 48, 66, 157, 159, 167

R

RAW data type 11
records 6, 7, 9, 47, 61, 65, 72, 77, 82, 85, 86, 90–92, 126,

132, 133, 137, 143, 161, 162, 174
REAL data type 12
REFERENCES 52, 53, 166
referential integrity 7
relational database 1–3, 10, 15, 137
revoking privileges 87
RIGHT () 103, 110
ROUND () 90, 97, 98, 101
ROWNUM 122, 126, 127, 136
rows 6–9, 47, 51, 60, 61, 74, 89, 105, 108, 110, 112, 123–

127, 137, 150, 175
RTRIM () 103, 111

S

schema 8, 35, 39, 45, 49, 50, 51, 146–148, 150, 152, 153,
168

SELECT 47, 56, 57, 65, 72–87, 89, 90–96, 99–103, 105–
120, 123–131, 134, 135, 137–143, 144, 146, 153–155,
157, 159, 162, 167, 171, 176, 178, 180, 181

SET data type 11
SMALLDATETIME 13
SMALLINT data type 12
SMALLMONEY data type 12
SQL Server Management Studio 26, 34, 40–42, 46

SQRT () 98, 102
Stored procedure 175–183
strings 4, 11, 12, 103, 104, 106–112, 118, 120, 121
Structured Query Language 1, 2
subqueries 128
SUBSTR 103, 111, 112
SUBSTRING 103, 111, 112
subtraction (–) 74
SUM () 90, 93, 97, 98

T

Table aliases 84
Tables 2, 4–9, 11, 12, 14, 35, 42, 46–48, 51–74, 77–79, 81,

82, 84–87, 89–94, 98, 104, 118, 122–128, 133–139,
141–144, 146, 153–155, 162, 166–168, 171–175

 creating 4, 9, 14, 47, 48, 51–55, 64, 65, 146
 DROP 4, 47, 51, 60, 64, 154, 166
 joins 137–139, 141–144
TEXT data type 11
TINYINT data type 12
TINYTEXT data type 11
TOP 45, 105, 108, 110, 112, 122, 126, 128, 136, 150
Transact-SQL (T-SQL) 1

Truncate Table 2, 61, 64
TRUNC () 98, 102

U

Unicode 36
Union 123–124, 136
Union ALL 123–124, 136
UNIQUE 7, 124
UPDATE 1, 4, 47, 65, 77, 78, 86, 87, 154

V

VARBINARY data type 11
VARCHAR data type 11, 12
VARCHAR2 data type 11, 12
Views 46, 146, 148–154
 creating 146, 148, 149, 151
 update 154
 deleting 154

W

Where clause 74, 127, 128
Wildcards 81

Index 187

http://taylorandfrancis.com

About the Author

Preston Zhang has over 20 years of experiences in database design and implementation.
As a database administrator, he manages Oracle, SQL Server and MySQL database servers
for university departments in Georgia. He has written many queries in Oracle SQL, SQL
Server T-SQL and MySQL to process millions of records for business reports. He has
developed Web applications using Oracle database as back-end for a large health care
company. He has taught undergraduate database and programming courses in private
universities for over 10 years. He has a Master of Science degree in Computer Information
Systems from University of Wisconsin-Parkside. He lives in Georgia with his family and
can be reached at prestonz668@gmail.com.

mailto:prestonz668@gmail.com

	Cover
	Half Title
	Title Page
	Copyright Page
	Preface
	Table of Contents
	Chapter 1: Introduction to SQL and Relational Databases
	Brief History of SQL and Relational Databases
	SQL Standards
	Oracle, SQL Server and MySQL Versions
	Relational Database Basic Concepts
	Constraints
	Data Integrity
	Types of Relationships
	One-to-Many Relationships
	Many-to-Many Relationships
	One-to-One Relationships
	Self-Referencing Relationships

	Summary

	Chapter 2: Data Types
	Character Data Types
	Number Data Types
	Date and Time Data Types
	Boolean Data Type
	Summary

	Chapter 3: Installation of Oracle, SQL Server and MySQL
	Minimum System Requirements
	Installation of Oracle 12c
	Installation of SQL Server 2016
	Installation of MySQL Server 5.7
	Summary
	Exercise

	Chapter 4: Database Development Tools
	Command Line Tools
	Oracle SQL Plus
	MySQL Command Line Client

	Installation of Oracle SQL Developer 4.3
	Installation of SQL Management Studio 2016
	Installation of MySQL Workbench 6.3
	Summary
	Exercise

	Chapter 5: Data Definition Language (DDL)
	Data Definition Language Statements
	Using SQL Commands to Create a Database
	Using GUI Tools to Create a Database
	Using SQL Commands to Create a Table
	Using GUI Tools to Create a Table
	Using Data from an Existing Table to Create a Table
	Renaming a Table
	Truncating a Table
	Altering a Table

	Summary
	Exercises

	Chapter 6: Data Manipulation Language (DML)
	Data Manipulation Language Statements
	INSERT INTO Statement
	SELECT Statements
	DISTINCT Clause
	WHERE Clause
	Arithmetic Operators
	Order of Arithmetic Operators
	Comparison Operators
	AND Condition
	OR Condition
	IN Condition
	BETWEEN Condition
	IS NULL Condition
	IS NOT NULL Condition
	LIKE Condition
	ORDER BY Clause
	ALIASES
	INSERT Multiple Records into an Existing Table
	UPDATE Statement
	DELETE Statement

	Data Control Language
	Summary
	Exercises

	Chapter 7: Aggregate Functions and GROUP BY Clause
	Aggregate Functions
	AVG ()
	COUNT ()
	MIN ()
	MAX ()
	SUM ()

	GROUP BY and HAVING Clause
	GOUNP BY with AVG () Function
	GROUP BY with COUNT () Function
	GROUP BY with HAVING Example
	Summary
	Exercises

	Chapter 8: Functions
	Common Number Functions
	CEIL ()
	CEILING ()
	FLOOR ()
	GREATEST ()
	LEAST ()
	MOD ()
	POWER ()
	ROUND ()
	SQRT ()
	TRUNC ()

	Common String Functions
	CONCAT ()
	FORMAT ()
	LEFT ()
	INITCAP ()
	LENGTH ()
	LEN ()
	LOWER ()
	LPAD ()
	LTRIM ()
	REPLACE ()
	RIGHT ()
	RPAD ()
	RTRIM ()
	SUBSTR ()
	SUBSTRING ()
	UPPER ()

	Common Date and time Functions
	CURRENT_TIMESTAMP
	ADD_MONTHS ()
	DATEADD ()
	DATE_ADD ()
	EXTRACT ()
	DATEPART ()
	CURRENT_DATE
	GETDATE ()
	CURRENT_DATE ()
	MONTHS_BETWEEN ()
	DATEDIFF ()
	PERIOD_DIFF ()
	SYSDATE
	SYSDATETIME ()
	SYSDATE ()

	Conversion Functions
	CAST ()
	TO_DATE ()
	CONVERT ()
	STR_TO_DATE ()

	Summary
	Exercises

	Chapter 9: Advanced SQL
	Advanced SQL Statements
	Union
	Union All
	INTERSECT
	EXCEPT
	MINUS
	ROWNUM
	TOP
	LIMIT
	Subquery
	CASE
	SEQUENCE
	IDENTITY
	AUTO_INCREMENT

	Summary
	Exercises

	Chapter 10: Joins
	INNER JOIN
	JOIN with USING Clause
	Joining with Multiple Tables
	LEFT JOIN
	RIGHT JOIN
	FULL JOIN
	Summary
	Exercise

	Chapter 11: Views
	Creating Views in Oracle
	Creating Views in T-SQL
	Creating Views in MySQL
	Updating Views
	Summary
	Exercises

	Chapter 12: Data Import and Export
	Oracle Data Export from Query Results
	SQL Server Data Export from Query Results
	MySQL Data Export from Query Results
	Oracle Data Import Tool
	SQL Server Data Import Tool
	MySQL Data Import Tool
	Summary
	Exercise

	Chapter 13: Stored Procedures
	Steps to Create an Oracle Stored Procedure
	Steps to Create a SQL Server Stored Procedure
	Steps to Create a MySQL Stored Procedure
	A Stored Procedure with Parameters
	Summary
	Exercise

	Index
	About the Author

