
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Mike Amundsen

Boston

RESTful Web Clients
Enabling Reuse Through Hypermedia

www.it-ebooks.info

http://www.it-ebooks.info/

978-1-491-92190-6

[LSI]

RESTful Web Clients
by Mike Amundsen

Copyright © 2016 Amundsen.com, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc. , 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Meg Foley
Production Editor: FILL IN PRODUCTION EDI‐
TOR
Copyeditor: FILL IN COPYEDITOR

Proofreader: FILL IN PROOFREADER
Indexer: FILL IN INDEXER
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

June 2016: First Edition

Revision History for the First Edition
2016-03-21: First Early Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491921906 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. RESTful Web Clients, the cover image,
and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

www.it-ebooks.info

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491921906
http://www.it-ebooks.info/

Table of Contents

1. Our HTML Roots and Simple Web APIs. 7
The Task Processing System (TPS) Web App 11

HTML from the Server 12
Common Web Browser as the Client 15
Observations 16

The Task Services Web API 17
Web API Common Practice 18
Designing the TPS Web API 18
Implementing TPS Web API 25
Observations 31

Summary 32
References 34

2. JSON Clients. 35
The JSON Web API Client 36

Objects 37
Addresses 40
Actions 42
Quick Summary 45

The JSON SPA Client 45
The HTML Container 45
The Top-Level Parse Loop 47
Objects, Addresses, and Actions 48

Dealing with Change 53
Adding a Field and Filter 54

Coding a New Client 57
Summary 59
References 62

iii

www.it-ebooks.info

http://www.it-ebooks.info/

3. The Representor Pattern. 63
XML or JSON: Pick a Side! 66

The New Crop of Hypermedia Formats 68
The Fallacy of The Right One 70
Re-Framing the Problem 71

The Representor Pattern 73
Separating Format from Functionality 74
The Selection Algorithm 75
A Solid STRATEGY 76
The TRANSFORM VIEW 78

A Server-Side Model 79
Handling the HTTP Accept Header 79
Implementing the STRATEGY Pattern 80
General Representor Modules 81
The WeSTL Format 81
A Sample Representor 85

Summary 88
References 90

4. Versioning and the Web. 93
Versioning for the Internet 96

TCP/IP’s Robustness Principle 96
HTTP’s MUST IGNORE 97
HTML’s Backward Compatibility 100

Guidelines for Non-Breaking Changes 101
API Designers 101
Server Implementors 103
Client Implementors 110

Summary 118
References 120

5. Collection+JSON Clients. 121
The Collection+JSON Format 123

Links 126
Items 127
Queries 128
Template 129
Error 131
A Quick Summary 131

The Collection+JSON Representor 132
The Top-Level Processing Loop 132
Links 133

iv | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Items 134
Queries 136
Template 137
Error 139

The Collection+JSON SPA Client 139
The HTML Container 140
The Top-Level Parse Loop 141
Links 142
Items 144
Queries 146
Template 148
Error 150
Quick Summary 151

Dealing with Change 151
Adding the NOTE Object to the TPS API 152

Extending Collection+JSON 158
Supporting Improved Input Types 159
The suggest Object 160

Summary 164
References 167

Table of Contents | v

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1

Our HTML Roots and Simple Web APIs

“What’s so fascinating and frustrating and great about life is that you’re constantly
starting over, all the time, and I love that.”

—Billy Crystal

Bob and Carol
“Hello, Carol, I’m Bob. I wanted to stop by to talk.”

“Right, Bob. I remember you from the acquisition
party last month. Good to see you again. I hear

you’re helping with the team re-org, right?”

“Right, I just left a meeting with the leadership and
they’re really excited about the update your team
recently released of the Task Progress System.

They asked me to come talk to you about taking it to the
next level here at BigCo.”

“That’s great, Bob. I think the Web app has lots of
potential and can help people all over the company

better manage their time and resources.”

“I agree. So, as a first step, we’d like you to form a
new team to focus on the client-side while I take
over your group to work exclusively on the server-

side.”

7

www.it-ebooks.info

http://www.it-ebooks.info/

“Sounds right, Bob. As long as I get to pick a few
people from the current team so we keep some

continuity, we’ll be fine.”

“No problem, you also need to bring on some new
client-side developers since that’s a key target for
the next phase of the TPS product.”

“So, I guess you’ll be in charge of the switch from
HTML-only to a Web Service API, right?”

“Yes. I’ll pick of the server-side team and we’ll start
work on a stand-alone Web API while you and
your new team can focus on the client-side that

comsumes the API.”

“There will be some challenges adpating the
HTML app into an API but you’ll have a good

team behind you, Bob.”

“I hope it’s not too challenging. We’ve got a win‐
dow of about twelve weeks to pull this all together.”

“Well, I guess we should get started then.”

Before jumping right into the process of creating hypermedia client applications, let’s
back up a bit and join the quest earlier on the curve — at the early end of the Web
application’s history. Many Web applications began as Web sites — as HTML-based
pages that were more than just a list of static documents. In some cases, the initial
Web app was a pure HTML app. It had tables of data, forms for filtering and adding
data, and lots of links to allow user to transition from one screen to the next.

8 | Chapter 1: Our HTML Roots and Simple Web APIs

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 1-1. BigCo TPS Screens

One of the things that make pure HTML applications interesting is that they are writ‐
ten in a very declarative style. They work without the need for imperative program‐
ming code within the client application. In fact, even the visual styling of HTML
applications is handled decaratively — via Cascading Style Sheets (CSS). It may seem
unusual to attempt to create user experiences using only declarative markup. But it
should be noted that many users in the early days of the Web were already family
with this interaction style from the mainframe world. In many ways, the early Web
applications looked and behaved much like the typical monochrome experiences
users had with mainframe, mini-computers and the early personal computers. And
this was seen as a “good thing.”

Our HTML Roots and Simple Web APIs | 9

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 1-2. IBM Portable PC

Typically, at some point in the life of successful HTML-based Web app, someone gets
the idea to convert it into a “Web API.” There are lots of reasons this comes about.
Some want to “unleash the value” locked inside a single application to make the
underlying functionality available to a wider audience. There might be new opportu‐
nities in other UI platforms (e.g. mobile devices, rich desktop apps, etc.) that don’t
support a simple HTML+CSS experience. Maybe someone has a new creative idea
and wants to try it out. Whatever the reasons, a Web API is born.

Usually, the process is seen as a straight-forward effort to expose an API that covers
the internal workings of the existing Web app but without the baggeage of the exist‐
ing HTML UI. And often the initial work is just that — taking away the UI (HTML)
and exposing the data- or object-model already in use within the Web server code as
the Web API.

Nex, it is assumed, a new team can build a ‘better’ user interface by consuming the
server-side Web API directly from a client application. Often the goal is to build a
‘native app’ on a smartphone or an advanced Web app using one of the latest client-
side frameworks. The first pass at the API is usually pretty easy to understand and
building a set of client apps can go smoothly — especially if both the client- and

10 | Chapter 1: Our HTML Roots and Simple Web APIs

www.it-ebooks.info

http://www.it-ebooks.info/

server-side imperative code are built by the same team or by teams that share the
same deep understanding of the original Web App.

And that’s the part of the journey we’ll take in this chapter. From HTML to API. That
will lay the groundwork for the remainder of the book as we work through the pro‐
cess of building increasingly robust and adaptable client applications powered by the
principles and practices of hypermedia.

The Task Processing System (TPS) Web App
For quick review, Carol’s team built a Web App that delivers HTML (and CSS) from
the Web server directly to common Web browsers. This app works in any brand and
version of browser (there are no CSS “tricks”, all HTML is standard, and there is no
Javascript at all). It also runs quickly and ‘gets the job done’ by focusing on the key use
cases originally defined when the app was first designed and implemented.

Figure 1-3. TPS User Screen

As you can see from Figure 1, the UI, while not likely to win any awards, is usable,
practical, and reliable. All things we wish for in any application.

The Task Processing System (TPS) Web App | 11

www.it-ebooks.info

http://www.it-ebooks.info/

The source code for this version of the TPS can be found in the
associated github repo here: https://github.com/RWCBook/html-
only. A running version of the app described in this chapter can be
found here: http://rwcbook01.herokuapp.com/ (TK: check URLs)

HTML from the Server
Part of the success of the TPS app is that it is very simple. The Web server delivers
clean HTML that contains all the links and forms needed to accomplish the required
use-cases.

 <li class="item">
 Home

 <li class="item">
 Tasks

 <li class="item">
 Users

For example, in the code listing above, you can see the HTML anchor tags (<a>…)
that point to related content for the current page. This set of ‘menu links’ appear at
the top of each page delivered by the TSP app.

<div id="items">
 <div>
 <a href="https://rwcbook01.herokuapp.com/user/alice"

 rel="item" title="Detail">Detail
 <a href="https://rwcbook01.herokuapp.com/user/pass/alice"

 rel="edit" title="Change Password">Change Password
 <a href="https://rwcbook01.herokuapp.com/task/?assignedUser=alice"

 rel="collection" title="Assigned Tasks">Assigned Tasks
 </div>

 <table>
 <tr>
 <th>id</th><td>alice</td>
 </tr>
 <tr>
 <th>nick</th><td>alice</td>
 </tr>
 <tr>
 <th>password</th>
 <td>a1!c#</td>
 </tr>
 <tr>
 <th>name</th><td>Alice Teddington, Sr.</td>

12 | Chapter 1: Our HTML Roots and Simple Web APIs

www.it-ebooks.info

https://github.com/RWCBook/html-only
https://github.com/RWCBook/html-only
http://rwcbook01.herokuapp.com/
http://www.it-ebooks.info/

 </tr>
 </table>
</div>

Each user record rendered by the server contains a link pointing to the a single record
which consists of a pointer (#1), a handful of data fields (#2), and some links that
point to other actions that can be performed for this user record (#3 and #4). These
links allow anyone viewing the page to get a detailed view of the record and also ini‐
tiate updates or password changes (assuming they have the rights to perform these
actions).

<!-- add user form -->
<form method="post" action="https://rwcbook01.herokuapp.com/user/">
 <div>Add User</div>
 <p>
 <label>Nickname</label>
 <input type="text" name="nick" value=""
 required="true" pattern="[a-zA-Z0-9]+" />
 </p>
 <p>
 <label>Full Name</label>
 <input type="text" name="name" value="" required="true" />
 </p>
 <p>
 <label>Password</label>
 <input type="text" name="password" value=""
 required="true" pattern="[a-zA-Z0-9!@#$%^&*-]+" />
 </p>
 <input type="submit"/>
</form>

The HTML for adding a user record is also very simple (see above). A clean HTML
<form> with associated <label> and <input> elements. In fact, all the input forms in
this Web App look about the same. Each FORM used for queries (safe operations) has
the method property set to get and each FORM used for writes (unsafe operations) has
the method property set to post, but that is the only important difference in the FORM
settings for this implementation.

The Task Processing System (TPS) Web App | 13

www.it-ebooks.info

http://www.it-ebooks.info/

A Note about HTML and POST

In HTTP, the POST method defines a non-idempotent, unsafe
operation (RFC7231). Some of the actions in the ‘TPS’ Web app
could be handled by an idempotent, unsafe operation but HTML
(still) does not support PUT or DELETE (the two idempotent,
unsafe operations in HTTP). As Roy Fielding has pointed out in a
2009 blog post (“It is ok to use POST”), it is certainly possible to
get everything done on the Web with only GET and POST. But it
would be a bit easier if some operations were idempotent since that
makes replaying failed requests much easier to deal with. As of this
writing, the several attempts to bing PUT and DELETE to HTML
have been given a chilly reception.

Along with the typical list, read, add, edit, and remove actions. The TPS web app
includes actions like ‘Change Password’ for users, and ‘Assign User’ for tasks. Below is
the ‘Assign User’ screen followed by the HTML that drives that screen.

Figure 1-4. Assign User Screen

14 | Chapter 1: Our HTML Roots and Simple Web APIs

www.it-ebooks.info

http://www.it-ebooks.info/

<!-- assign user form -->
<form method="post" action="//rwcbook01.herokuapp.com/task/assign/137h96l7mpv">
 <div>Assign User</div>
 <p>
 <label>ID</label>
 <input type="text" name="id" value="137h96l7mpv" readonly="readonly" />
 </p>
 <p>
 <label>User Nickname</label>
 <select name="assignedUser">
 <option value="">SELECT</option>
 <option value="alice">alice</option>
 <option value="bob" selected="selected">bob</option>
 <option value="carol">carol</option>
 <option value="mamund">mamund</option>
 <option value="ted">ted</option>
 </select>
 </p>
 <input type="submit" />
</form>

Note that this form uses the HTTP POST method. Since HTML only provides GET and
POST, all unsafe actions (create, update, remove) are enabled using a POST form. We’ll
have to deal with this later when we convert this HTML-only Web app into a Web
API.

Common Web Browser as the Client
The “client-side” of common Web browser applications like this one is pretty un-
interesting. First, this app has no client-side javascript dependencies. It runs fine w/o
any javascript running locally. The app does take advantage of a handful of HTML5
user experience features such as:

• HTML pattern to perform local input validations
• HTML required to guide the user in filling out important fields
• HTML readonly to prevent users from changing important FORM data

These, along with the use of a SELECT input control to supply users with valid input
options, do a pretty good job of providing client-side interaction — all without rely‐
ing on custom javascript. Some of the screens could be improved with a little client-
side script to help hide and show forms, adjust the layout, etc. but to keep things
simple in our example, Carol and her team have not yet implemented what is known
as the “Unobtrusive Javascript” layer. And, even if they had added this enhancement,
the app would have no direct dependence on it and would still function without it.

The Task Processing System (TPS) Web App | 15

www.it-ebooks.info

http://www.it-ebooks.info/

Unobtrusive Javascript

The term “Unobtrusive Javascript” is about “the separation of
behavior (JavaScript),content (HTML), and presentation(CSS)”.
The goal is to create Web applications that function without a fatal
dependency on Javascript or CSS. In 2007, the estimate was that up
to 10% of browsers had Javascipt disabled. By 2010, stats published
buy Yahoo indicated only about 6% of users worldwide had dis‐
abled Javascript. I found it difficult to find any more recent data on
the subject. While there are developers who still talk about making
Unobtrusive Javascript a goal, it is common to encounter Web site
and client apps that fail when support for Javascript is turned off.

The CSS styling here is handled by a library called “Semantic UI”. It supports lots of
UI design elements while still supporting reasonable HTML markup. Semantic UI
libraries also support javascript-driven enhancements that may be used in future
updates for this app.

Observations
It turns out that, at least for this Web app, the client-side experience is pretty boring
to talk about. There just isn’t much here to cover! That’s actually good news. The
common Web browser is designed to accept HTML markup and — based on the
responses links and forms (and the added input validations) — provide a solid user
experience without the requirement of writing imperative javascript code.

Here are a few other observations:

Very Few “Bugs”
Since there is no custom Javascript code for this client there are almost “no bugs”,
either. It is possible that the server will emit broken HTML, of course. And a
poorly implemented CSS rule can cause the UI to become unusable. But the
fewer lines of code invovled, the less likelihood a bug will be encountered. And
this app has no imperative client code.

POST-Only Updates
Since the app is limited to HTML-only responses, all data updates such as create,
update, delete, along with the custom events like assign-user, and change-
password are handled using HTML POST requests. This is, strictly speaking, not a
bug but it does run counter to the way most Web developers think about actions
on the Web and the use of the non-idempotent POST action does introduce a
slight complication in edge-cases where users are not sure of a POST was success‐
ful and attempt it a second time.

16 | Chapter 1: Our HTML Roots and Simple Web APIs

www.it-ebooks.info

http://www.it-ebooks.info/

Links and Forms
One of the nice things about using HTML as a response format is that it contains
support for a wide range of hypermedia controls: links and forms. The TPS
responses include <a>… tag to handle simple immutable links, <form
method="get"> elements to handle safe searches and queries, and <form

method="post"> controls to handle all the unsafe write operations. Each response
contains all the details for passing arguments to the server and even include sim‐
ple client-side validation rules to check before the data is sent to the server. Hav‐
ing all this data in the response makes is easy for the browser to enforce specific
input rules without having any custom client-side code.

Limited User Experience
Despite the reality of a “bug-free” app, and fully-functional write operations via
POST, the user experience for this Web App is still very basic. This might be
acceptable within a single team or small company, but if BigCo ever plans to
release this app to a wider public — even to other teams within the company — a
more responsive UX would be a good idea.

So, now that we have a baseline Web App to start from, let’s take a look at how BigCo’s
Bob and Carol can take this app to “the next level” by creating a server-side Web API
that can be used to power a stand-alone Web client application.

The Task Services Web API
Often the “next logical step” in the life of an HTML-base Web application is to pub‐
lish a stand-alone Web API — an application programming interface — that can be
used by client applications directly. In the dialog at the start of this chapter Bob has
taken on the task of leading the server-side team that will design, implement, and
publish the ‘Task System’ API while Carol’s team will build the client applications that
consume that API.

The source code for the JSON-based RPC-CRUD Web API version
of the TPS can be found in the associated github repo here: https://
github.com/RWCBook/json-crud. A running version of the app
described in this chapter can be found here: http://rwcbook02.hero
kuapp.com/ (TK: check URLs)

Let’s first do a quick rundown on the design process for a typical Web API server fol‐
lowed by a review of the changes needed to convert our existing TPS HTML-only
Web app into a proper JSON-based RPC-CRUD Web API.

The Task Services Web API | 17

www.it-ebooks.info

https://github.com/RWCBook/json-crud
https://github.com/RWCBook/json-crud
http://rwcbook02.herokuapp.com/
http://rwcbook02.herokuapp.com/
http://www.it-ebooks.info/

Web API Common Practice
The common practice for creating Web APIs is to publish a fixed set of Remote Pro‐
cedure Call (RPC) “end points” expressed as URLs that allow access to the important
functionality of the original application. This practice also covers the design of those
URLs, the serialized objects that are passed between server and client, and a set of
guidelines on how to use HTTP methods, status codes, and headers in a consistent
manner. For most Web developers today, this is the ‘state of the art’ for HTTP.

HTTP, REST, and Parkinson’s Law

At this point in many discussions, someone starts mention the
word ‘REST’ and a fight (literally or actually) may break out
between people who want to argue about the ‘proper’ way to design
URLs, which HTTP headers you should not use, why it is accepta‐
ble to ignore some HTTP Status codes, and so forth. Disputes
about the content and meaning of IETF documents specifying the
HTTP protocol and disagreements about the shape of URLs are all
side-stories to the main adventure: building solid Web applications.
Arguing about URLs instead of discussing which interactions are
needed to solve a use-case is missing the point. HTTP is just ‘tech’,
‘REST’ is just a style (like punk rock or impressionism, etc.). Disa‐
greeing on what is ‘true REST’ or ‘proper HTTP’ is a classic cases of
Parkinson’s Law of Triviality - debating the trivial points while
ignoring the important issues.
It turns out designing and implementing reliable and flexible appli‐
cations that live on the Web is non-trivial. It takes a clear head, an
eye for the future, and a willingness to spend time engaged in
systems-level thinking. Instead of focusing on those hard prob‐
lems, some get caught up in disagreements on the characters in a
URL or other silliness. I don’t plan to do that here.

What follows in this chapter is the common practice for HTTP-based Web APIs. It is
not, as I plan to illustrate in the ensuing chapters, the only way to implement services
on the Web. Once we get beyond this particular design and implementation detail we
can move on to explore additional approaches.

Designing the TPS Web API
Esentially, we need to design the Web API. The common approach is to identify a set
of objects that will be manipulated via the API and arrange a fixed set of actions on
those objects. The actions are Create, Read, Update, and Delete — the CRUD opera‐
tions. In the case of the TPS example, the list of published objects and actions would
look something like that shown in Table 1.

18 | Chapter 1: Our HTML Roots and Simple Web APIs

www.it-ebooks.info

http://www.it-ebooks.info/

Table 1-1. TPS API End Points

URL Method Returns Object Accepts Object

/task/ GET, POST TaskList Task(POST)

/task/{id} GET,PUT,DELETE Task Task(PUT)

/user/ GET,POST UserList User(POST)

/user/{id} GET,PUT User User(PUT)

This looks fairly simple. Four endpoints and about ten operations (we’ll handle the
‘missing’ one in a minute).

There are essentially two forms of the object URL: list and item. The list version of the
URL contains the object name (Task or User) and supports 1) HTTP GET to return a
list of objects and, 2) HTTP POST to create a new object and add it to the list. The item
version of the URL contains both the object name (Task or User) and the object’s
unique id value. This URL supports 1) HTTP GET to return a single object, 2) HTTP
PUT to support updating the single object, and 3) HTTP DELETE to support removing
that object from the collection.

However, there are some ‘exceptions’ to this simple CRUD approach. Looking at the
table, you’ll notice that the TPS User object does not support the DELETE operation.
This is a variant to the common CRUD model, but not a big problem. We’d need to
document that exception and make sure the API service rejects any DELETE request
for User objects.

Also, the TPS Web App offers a few specialized operations that allow clients to mod‐
ify server data. These are:

TaskMarkCompleted
Allows client apps to mark a single Task object with the completeFlag="true"

TaskAssignUser
Allows client apps to assign a User.nick to a single Task object.

UserChangePassword
Allow client apps to change the password value of User object.

None of the above operations falls neatly into the CRUD pattern. This complicates
the API design a bit. Typically, these special operations are handled by creating a
unique URL (e.g. /task/assign-user or /user/change-pw/) and executing an
HTTP POST request with a set of arguments to pass to the server.

The Task Services Web API | 19

www.it-ebooks.info

http://www.it-ebooks.info/

Finally, the TPS Web API supports a handful of filter operations that need to be han‐
dled. They are:

TaskFilterByTitle
Return a list of Task objects whose title property contains the passed-in string
value

TaskFilterByStatus
Return a list of Task objects whose completeFlag property is set to “true” (or set
to “false”)

TaskFilterByUser
Return a list of Task objects whose assignedUser property is set to the passed-in
User.nick value

UserFilterByNick
Return a list of User objects whose nick property contains the passed-in string
value

UserFilterByName
Return a list of User objects whose name property contains the passed-in string
value

The common design approach here is to make an HTTP GET request to the object’s
list URL (/task/ or /user/) and pass query arguments in the URL directly. For
example, to return a list of Task objects that have their completeFlag set to “true”,
you could use the following HTTP request: GET /task/?completeFlag=true.

So, we have the standard CRUD operations (nine in our case), plus the special opera‐
tions (three), and then the filter options (five). That’s a fixed set of 17 operations to
define, document, and implement.

A more complete set of API Design URLs — one that includes the arguments to pass
for the write operations (POST, and PUT) would look like the one in Table 2.

Table 1-2. Complete Set of TPS API End Points

Operation URL Method Returns Inputs

TaskList /task/ GET TaskList none

TaskAdd /task/ POST TaskList title,

completeFlag

TaskItem /task/{id} GET Task none

20 | Chapter 1: Our HTML Roots and Simple Web APIs

www.it-ebooks.info

http://www.it-ebooks.info/

Operation URL Method Returns Inputs

TaskUpdate /task/{id} PUT TaskList id,

title,

completeFlag

TaskDelete /task/{id} DELETE TaskList none

TaskMarkComplete /task/completed/{id} POST Task none

TaskAssignUser /task/assign/{id} POST Task id,

nick

TaskFilterByTitle /task/?Title={title} GET TaskList none

TaskFilterByStatus /task/?CompleteFlag={status} GET TaskList none

TaskFilterByUser /task/?AssignedUser={nick} GET TaskList none

UserList /user/ GET UserList none

UserAdd /user/ POST UserList nick,

password,

name

UserItem /user/{nick} GET User none

UserUpdate /user/{nick} PUT UserList nick,

name

UserChangePassword /user/changepw/{nick} POST User nick,

oldPass,

newPass,

checkPass

UserFilterByNick /user/?nick={nick} GET UserList none

UserFilterByName /user/?name={name} GET UserList none

The Task Services Web API | 21

www.it-ebooks.info

http://www.it-ebooks.info/

A Note about URL Design

The URLs in the Task System API example are just one of a num‐
ber of ways to design URLs for a Web API. There are several books
(Allamaraju, Masse) which devote pages to the ‘proper’ way to
design a URL for human use. In truth machines don’t care about
the shape of the URL — they only care that it follows the standards
for valid URLs (RFC3986) and that they contain enough informa‐
tion for the service to route the request to the right place for pro‐
cessing. In this book, you’ll find a wide range of URL designs.

Documenting Data-Passing
By now, you’ve probably noticed that what we have done here is document a set of
remote-procedure calls (RPCs). We’ve identifed the actions using URLs and listed the
arguments to pass for each of them. The arguments are listed in the table, but it’s is
worth calling them out separately, too. We’ll need to share these with API developers
so that they know which data element to pass for each request.

Table 1-3. Arguments to Pass for the TPS Web API

Agument Name Operation(s)

id TaskItem, TaskUpdate, TaskDelete

title TaskAdd, TaskUpdate, TaskFilterByTitle

completeFlag TaskAdd, TaskUpdate, TaskMarkComplete, TaskFilterByStatus

assignedUser TaskAssignUser, TaskFilterByUser

nick UserAdd, UserChangePassword, UserFilterByNick

name UserAdd, UserUpdate, UserFilterByName

password TaskAdd, TaskChangePassword

oldPass TaskChangePassword

newPass TaskChangePassword

checkPass TaskChangePassword

Notice that the last three arguments in the table (oldPass, newPass, and checkPass)
do not belong to any TPS objects (e.g. Task or User). They only exist in order to com‐
plete the UserChangePassword operation. Usually, RPC-CRUD style APIs restrict

22 | Chapter 1: Our HTML Roots and Simple Web APIs

www.it-ebooks.info

http://www.it-ebooks.info/

data-passing to arguments that belong to some defined object. But, as we’ve seen
already, there are exceptions to this general rule.

Some RPC-CRUD API designs will document an additional set of
objects just for passing arguments. I’ll not be covering that here,
but it is an option you may encounter when working with other
RPC-CRUD APIs

It is not enough to just document which data arguments are passed with each HTTP
request. It is also important to document the format used to pass arguments from the
client to the service. There is no set standard for data-passing with JSON-based APIs,
but the typical option is to pass arguments as JSON dictionary objects. For example,
the TaskAdd operation in Table 2-2 lists two inputs: title and completeFlag. Using a
JSON dictionary to pass this data would look like this:

POST /task/ HTTP/1.1
content-type: application/json
...

{
 "title" : "This is my job",
 "completeFlag" : "false"
}

Even though the most common way to pass data from client to server on the WWW
is using common HTML FORM media type (application/x-www-form-urlencoded),
it is limited to sending simple name-value pairs from client to server. JSON is a bit
more flexible than FORM data since it is possible to pass aribtarily nested graphs of data
in a single request. For this implementation, we’ll use the typical JSON dictionary
approach.

That covers the endpoints, arguments, and format details for sending data from client
to server. But there is another important interface detail missing here — the format of
the responses. We’ll pick that up in the next section.

Serialized JSON Objects
Another important element of this PRC-CRUD style of Web API practice is to iden‐
tity the format and shape of the serialized objects passed from server to client and
back again. In the case of the TPS Web API Bob has decided to use simple JSON-
serialized objects to pass state back and forth. Some implementations will use nested
object trees to pass between parties, but BigCo’s serialized objects are rather simple
for the moment.

Scanning the Returns column of Table 2 you’ll notice there are four different return
elements defined:

The Task Services Web API | 23

www.it-ebooks.info

http://www.it-ebooks.info/

1. TaskList
2. Task
3. UserList
4. User

These are the return collections/objects that need to be explicitly defined for API
developers. Lucky for us, the TPS Web API has only two key objects as that will make
our definition list rather short.

Tables 4 and 5 define the properties for the Task and User objects in our TPS Web
API.

Table 1-4. Task Object Properties

Property Type Status Default

id string required none

title string required none

completeFlag “true” or “false” optional “false”

assignedUser MUST match User.nick optional “”

All fields are defined as "string" types. This is just to simplify the
implementation of the TPS API for the book. Also, the stored
record layout includes dateCreated and dateUpdated fields that
are not listed in our design here. These were left out of the tables
for clarity.

Table 1-5. User Object Properties

Property Type Status Default

nick [a-zA-Z0-9]+ required none

password [a-zA-Z0-9!@#$%^&*-]+ required none

name string required none

For our TPS app, we’ll make things easy and define the TaskList and UserList
return objects simply JSON arrays of the Task and User objects respectively. Below
are examples of each object:

24 | Chapter 1: Our HTML Roots and Simple Web APIs

www.it-ebooks.info

http://www.it-ebooks.info/

/* TaskList */
{
 "task": [
 {
 "id": "dr8ar791pk",
 "title": "compost",
 "completeFlag": false,
 "assignedUser": "mamund"
 }
 ... more tasks appear here ...
]
}

/* UserList */
{
 "user": [
 {
 "nick": "lee",
 "name": "Lee Amundsen",
 "password": "p@ss"
 }
 ... more user records appear here ...
]
}

So we’ve defined the following for our TPS Web API:

• URLs and HTTP methods for each RPC endpoint
• Arguments and format for passing data to the service
• JSON objects returned to the clients

There are a few other implementation details that we’ll skip over here (handling
errors, HTTP return codes, etc.). These would all appear in a complete documenta‐
tion set for RPC-CRUD APIs, however. For now, we’ll make some assumptions and
move on to some implementation details for creating the actually running TPS Web
API.

Implementing TPS Web API
We need to make some changes to the existing TPS Web site/app in order to imple‐
ment our JSON Web API. We don’t need to start from scratch (although in some real-
life cases that might be the way to go). For our example, we’ll just ‘fork’ the existing
implementation to create a new stand-alone codebase that we can alter and turn into
a functioning JSON-based RPC-CRUD Web API.

The Task Services Web API | 25

www.it-ebooks.info

http://www.it-ebooks.info/

The source code for the JSON-based RPC-CRUD Web API version
of the TPS can be found in the associated github repo here: https://
github.com/RWCBook/json-crud. A running version of the app
described in this chapter can be found here: http://rwcbook02.hero
kuapp.com/ (TK: check URLs)

We have two tasks here. First, we need to modify the TPS Web site to get it to stop
emitting HTML and start emitting valid JSON responses. That won’t be too tough
since the TPS server has some smart tech built in to make representing stored data in
various media types relatively easy.

We’ll dig into the tech for representing responses in an upcoming
chapter (TK: ref?)

The second task is to add support for all the HTTP requests documented in Table 2-2
above. The good news is most of those operations are already supported by the TPS
Web site app. We just need to add a few of them (three, actually) and clean up some
of the server-side code to make sure we have all the operations working properly.

So, let’s get started.

Defaulting to JSON Responses
The TPS Web Site/App emits HTML for all responses. Our Web API will need to
change that. Instead of HTML (text/html), we will emit JSON (application/json)
for all responses. Another important change we’ll make is to limit the service respon‐
ses to only send the actual stored Task and User objects and properties. This will fol‐
low along with the information documented in Table 2-2 (Complete set of TPS API
End Points) and the details in Tables 2-4 (Task Object Properties) and 2-5 (User
Object Properties).

Here is an example of the JSON output from a request to the /task/ URL:

{
 "task": [
 {
 "id": "137h96l7mpv",
 "title": "Update TPS Web API",
 "completeFlag": "true",
 "assignedUser": "bob"
 },
 {
 "id": "1gg1v4x46cf",
 "title": "Review Client API",

26 | Chapter 1: Our HTML Roots and Simple Web APIs

www.it-ebooks.info

https://github.com/RWCBook/json-crud
https://github.com/RWCBook/json-crud
http://rwcbook02.herokuapp.com/
http://rwcbook02.herokuapp.com/
http://www.it-ebooks.info/

 "completeFlag": "false",
 "assignedUser": "carol"
 },
 {
 "id": "1hs5sl6bdv1",
 "title": "Carry Water",
 "completeFlag": "false",
 "assignedUser": "mamund"
 }
 ... more task records here
]
}

Note that there are no links or forms in the JSON responses. This is typical for RPC-
CRUD style API responses. The URLs and action details are included in the human-
readable documentation (TK: ref?) and will be hard-coded into the client application
calling this API.

As you would expect, the responses for calls to the /user/ endpoint look similar to
those from the /task/ URL.

{
 "user": [
 {
 "id": "alice",
 "nick": "alice",
 "password": "a1!c#",
 "name": "Alice Teddington, Sr."
 },
 {
 "id": "bob",
 "nick": "bob",
 "password": "b0b",
 "name": "Bob Carrolton"
 },
 more user records here
]
}

So, that covers the service responses. Next, we need to make sure all the RPC opera‐
tions documented in Table 2-2. (TK:check)

Updating the TPS Web API Operations

The TPS Web Site/App supported edit and remove operations via the HTML POST
method. While this is perfectly fine from an HTML and HTTP point of view, it runs
counter to the common practice that jhas grown up around the JSON-based RPC-
CRUD pattern. Instead. edit operations are handled by the HTTP PUT method and
remove operations are handled by the HTTP DELETE operations.

To make our TPS Web API compliant, we need to add two things:

The Task Services Web API | 27

www.it-ebooks.info

http://www.it-ebooks.info/

1. Support for PUT and DELETE on /task/{id} URLs
2. Support for PUT on the /user/{nick} URLs.

Since the TPS service already supports the actions of ‘update’ and ‘remove’ for Tasks
(and ‘update’ for Users), the only thing we need to add to the service code is support
for executing those actions via HTTP PUT and DELETE. A quick look at the code from
our TPS server (with the functionality updated is below:

...
case 'POST':
 if(parts[1] && parts[1].indexOf('?')===-1) {
 switch(parts[1].toLowerCase()) {

 /* Web API no longer supports update and remove via POST
 case "update":
 updateTask(req, res, respond, parts[2]);
 break;
 case "remove":
 removeTask(req, res, respond, parts[2]);
 break;
 */
 case "completed":
 markCompleted(req, res, respond, parts[2]);
 break;
 case "assign":
 assignUser(req, res, respond, parts[2]);
 break;
 default:
 respond(req, res,
 utils.errorResponse(req, res, 'Method Not Allowed', 405)
);
 }
 }
 else {
 addTask(req, res, respond);
 }
break;

/* add support for update via PUT */
case 'PUT':
 if(parts[1] && parts[1].indexOf('?')===-1) {
 updateTask(req, res, respond, parts[1]);
 }
 else {
 respond(req, res,
 utils.errorResponse(req, res, 'Method Not Allowed', 405)
);
 }
break;

/* add support for remove via DELETE */
case 'DELETE':
 if(parts[1] && parts[1].indexOf('?')===-1) {

28 | Chapter 1: Our HTML Roots and Simple Web APIs

www.it-ebooks.info

http://www.it-ebooks.info/

 removeTask(req, res, respond, parts[1]);
 }
 else {
 respond(req, res,
 utils.errorResponse(req, res, 'Method Not Allowed', 405)
);
 }
break;
...

As you can see from the code snippet above, the HTTP handler for Task data no
longer supports the ‘update’ and ‘remove’ actions via POST (#1). They are now
accessed via HTTP PUT (update) and DELETE (remove). A similar change was made to
support ‘update’ for User data, too.

To be complete, the Web API service should also be updated to no longer serve up the
assignUser, markCompleted, and changePassword pages. These were provided by the
TPS Web site/app to allow users to enter data via HTML FORMS. Since our Web API
doesn’t support FORMS, we don’t need these pages anymore.

Below is the TPS Web API Task handler with the assignUser and markCompleted
FORM pages turned off:

....
case 'GET':
 /* Web API no longer serves up assign and completed forms
 if(flag===false && parts[1]==="assign" && parts[2]) {
 flag=true;
 sendAssignPage(req, res, respond, parts[2]);
 }
 if(flag===false && parts[1]==="completed" && parts[2]) {
 flag=true;
 sendCompletedPage(req, res, respond, parts[2]);
 }
 */
 if(flag===false && parts[1] && parts[1].indexOf('?')===-1) {
 flag = true;
 sendItemPage(req, res, respond, parts[1]);
 }
 if(flag===false) {
 sendListPage(req, res, respond);
 }
break;
....

Testing the TPS Web API with cURL
While we need a fully-functioning JSON CRUD client to test all of the TPS Web API,
we can still run some basic tests using the curl command-line utility. This will con‐

The Task Services Web API | 29

www.it-ebooks.info

http://www.it-ebooks.info/

firm that we have set up the TPS Web API correctly (per the API design above) and
allow us to do some simple interactions with the running API service.

Below is a short curl session that shows running all the CRUD operations on the
Task endpoint as well as the TaskMarkCompleted special operation.

To save space and stay within the page layout some of the com‐
mand lines are printed on two lines. If you are running these com‐
mands yourself, you’ll need to place each command on a single
line.

// create a new task record
curl -X POST -H "content-type:application/json" -d '{"title":"testing"}'
 http://localhost:8181/task/

// fetch the newly created task record
curl http://localhost:8181/task/1z4yb9wjwi1

// update the existing task record
curl -X PUT -H "content-type:application/json" -d '{"title":"testing again"}'
 http://localhost:8181/task/1z4yb9wjwi1

// mark the record completed
curl -X POST -H "content-type:application/json"
 http://localhost:8181/task/completed/1z4yb9wjwi1

// delete the task record
curl -X DELETE -H "content-type:application/json"
 http://localhost:8181/task/1z4yb9wjwi1

So, we’ve made the implementation changes need to get the TPS Web API up and
running:

• Set the API responses to all emit simple JSON (application/json) arrays
• Added support for PUT(update) and DELETE(remove) for Task objects
• Removed support for POST(update) and POST(remove) for Task objects
• Removed support for GET(assignUser) and GET(markCompleted) FORMS for
Task objects

• Added support for PUT(update) for User objects
• Removed support for POST(update) for User objects
• Removed support for GET(changePassword) FORMS for User objects

As you can see from the list, we actually did more to remove support in the Web API
than anything else. Rember that we also removed all the links and forms from the

30 | Chapter 1: Our HTML Roots and Simple Web APIs

www.it-ebooks.info

http://www.it-ebooks.info/

Web API responses. The work of knowing what it takes to filter and modify data on
the TPS service will now need to be coded into the JSON client application. We’ll see
how that works in the next chapter.

Observations
Now that we have a working TPS Web API service up and running, its worth making
a few observations on the experience.

Plain JSON Responses
A hallmark of Web APIs today is to emit ‘plain JSON’ responses. No more
HTML, not even XML — just JSON. The advantage is that supporting JSON in
browser clients Javascript is easier than dealing with XML or parsing HTML
responses. Although we didn’t get to see it in our simple example, JSON response
can carry a large nest graph of data more efficiently than HTML, too.

API Design is All About URLs and CRUD
When we were designing out Web API we spent most of the time and effort
crafting URLs and deciding on which methods and arguments to pass for each
request. We also needed make sure the exposed URLs map the Create-Read-
Update-Delete (CRUD) semantics against important JSON objects. There were a
few actions (three for our use case) that didn’t map well to CRUD and we had to
create special URLs for them, too.

No More Links and Forms
Another common feature of Web APIs is the lack of links and forms in respon‐
ses. Common Web browsers use the links and forms in HTML responses to ren‐
der a user interface for humans to scan and activate. This works because the
browser already understands links and forms in HTML. Since JSON doesn’t have
things like <a>… and <form method="get"> or <form method="post">, the
information needed to execute actions from the UI will need to be baked into the
API client code.

API Servers are Rather Easy
Since most of what we did to make our TPS Web app into a Web API is remove
features, it seems building API servers is relatively easy to do. There are certainly
challenges to it — our TPS Web API is pretty simple — but for the most part, we
have less things to decide when creating these RPC-CRUD style APIs than when
we are creating both the data responses and the UI rendering instructions from
the standard Web site/app.

Completing the API is Only Part of the Story
We found out that once you have the Web API up and running, you still need to
test it with some kind of client. We can’t just point a Web browser at the API
since browsers don’t know about our CRUD and special operations. For now, we

The Task Services Web API | 31

www.it-ebooks.info

http://www.it-ebooks.info/

used the curl command-line utility to execute HTTP-level requests against the
API to make sure it was behaving as expected. We still need to build a fully-
functional JSON CRUD client before we’ll know for sure, though.

Summary
In this chapter, we started our journey toward hypermedia clients by first stepping
back a bit and reviewing a kind of ‘early history’ of typcial Web APIs — especially
their roots in simple HTML-only Web site/apps. We were introduced to BigCo’s Task
Processing System (TPS) Web app and learned that the HTML5 app worked just fine
without any javascript code at all. Sure, it was a bit limited but all the functionality
needed was available in a responsive, visually acceptable (not stunning) UI.

But we’re interested in API services and API clients. So the first task was to convert
this simple HTML-Only Web app into a pure JSON Web API service. And it was not
too tough, either. We adopted the common RPC-CRUD design model by establishing
a key URL for each API object (Task and User) and implementing the Create-Read-
Update-Delete (CRUD) pattern against these objects and thier URLs. We had to cre‐
ate a few other special URLs to support unique operations (using POST) and
documented a set of filter routines agains the Web API’s ‘collection’ URLs (/task/
and /user/). We then documented the JSON objects that were returned and estab‐
lished that all payloads sent from client to server should be formatted as JSON dictio‐
nary objects.

With the design completed, we needed to actually implement the API. We were able
to ‘fork’ the existing Web site app and spent most of our efforts removing functional‐
ity, simplifying the format (we dropped all the links and forms in the JSON respon‐
ses) and cleaning up the Web API code. Finally, we used the curl command-line
utility to confirm our API was functioning as expected.

This gives us a great start on our TPS API service. The next challenge is building a
fully-functional JSON CRUD client that understands the TPS Web API documenta‐
tion. Since we spent a lot of our time eliminating information in the Web API respon‐
ses, it seems likely, we’ll need to add that information to the API client instead.

We’ll take on that challenge in a future chapter.

Bob and Carol
So, Bob. Do you have the TPS Web API up and
running yet?

32 | Chapter 1: Our HTML Roots and Simple Web APIs

www.it-ebooks.info

http://www.it-ebooks.info/

Actually, Carol, I do. It was not as hard as I
thought to implement, but did take a bit more

designing than I’d planned.

Right, this was what I thought would happen. With
the links and forms no longer in the responses,
you needed to re-design the API to support the

CRUD pattern, right?

Yep. The Create-Read-Update-Delete pattern is
what most JSON API developers expect. But we

still had to support some other non-CRUD actions
like our `Assign User', `Mark Completed', and `Change

Password’ use-cases.

Yeah, not all actions will fit into the pattern. So, I
assume you’ve got some serious documentation for
me now, too.

Well, the docs are not too big -- It’s a simple app
right now. But I’ve got a list of all the URLs, HTTP

methods, payloads, arguments, and return object
for you. You’ll need to hard-code all that into your app now

that we don’t have any links or forms in the response to
carry that information.

Oh, now I see what you meant when you said the
implementation was not so hard. Your team took a
bunch of stuff out of the server-side API and my

team need to spend time putting it all back in on the client
side.

Well, that’s one way to look at it, I guess. Hadn’t
tought about it like that before.

No worries, Bob. So, you set for my team to start
working on the JSON API client for the TPS API?

Yes, and the sooner the better. I can’t use a browser
to test this API anymore. The command-line util‐

ities work but I need a fully functional client to
help me figure out if there is anything we missed.

Summary | 33

www.it-ebooks.info

http://www.it-ebooks.info/

OK, Bob. We’ll get right on it and meet you back
here in a few days.

References
1. The monochrome computer screen image is a photo of an IBM Portable PC from

Hubert Berberich (HubiB) (Own work) [CC BY-SA 3.0 (http://creativecom
mons.org/licenses/by-sa/3.0)], via Wikimedia Commons

2. Roy Fielding’s 2009 blog post It is ok to use POST points out that his dissertation
never mentions CRUD and that it is fine to use GET and POST for Web apps.

3. The book Unobtrusive Ajax (2007) by Jesse Skinner was published by O’Reilly as
part of their “Short Cut” series.

4. A Yahoo blog post How many users have Javascript disabled? (2010) shows that
only about 2% of US users were visiting Yahoo properties with scripting turned
off.

5. Two books I recommend when looking for guides in URL design are RESTful
Web Services Cookbook (2010) by Subbu Allamaraju and REST API Design Rule‐
book (2011) by Mark Masse. There are quite a few more, but these are the books I
find I use often.

6. Parkinson’s Law of Triviality is sometimes referred to as “bikeshedding” was first
described by C. Northcut Parkinson in his book Parkinson’s Law – and other stud‐
ies in administration (1957). When referring to the case of committees working
through a busy agenda, Parkinson observed “The time spent on any item of the
agenda will be in inverse proportion to the sum [of money] involved.”

34 | Chapter 1: Our HTML Roots and Simple Web APIs

www.it-ebooks.info

http://creativecommons.org/licenses/by-sa/3.0
http://creativecommons.org/licenses/by-sa/3.0
http://roy.gbiv.com/untangled/2009/it-is-okay-to-use-post
https://developer.yahoo.com/blogs/ydn/many-users-javascript-disabled-14121.html
http://www.it-ebooks.info/

CHAPTER 2

JSON Clients

“All my books started out as extravagant and ended up pure and plain.”
—Annie Dillard

Bob and Carol
“OK, Carol. The TPS Web API is up and running
and ready for your team to create a client.”

“Sounds good, Bob. I see your team provided the
API documentation, too. Wow, that seems like a lot

of documentation for such a small API!”

“Well, when you get down to it, there are lots of
details to work out when writing your client app.
The objects to deal with, all the URLs. and even all

the parameters for adding and updating records -- that’s all
part of the docs.”

“Right. No problem. I hadn’t thought about that
level of detail. I thought the CRUD pattern would

make most of this easy.”

“Even though we used the Cread-Read-Update-
Delete pattern where we could, not all the API
actions fit neatly into those four actions. You’ll see

35

www.it-ebooks.info

http://www.it-ebooks.info/

a couple things where we just use HTTP POST with argu‐
ments.”

“That’s fine. I’ll to discuss this with the team to
make sure we account for it all and still keep the
client app small and limit the added complexity.

Hopefully we can get our first client app into production by
the end of next week.”

“Ok, Carol. Keep me posted and we’ll get together
next week.”

OK, now that we have a fully-functionl JSON Web API, we’re ready to build the client
apps. Since the Web API we’re targeting is an RPC-CRUD API, we’ll need to consult
the documentation and be sure to build into the app all the rules for constructing
URLs, handling unique response objects/collections, and knowing the full details on
how to execute all the operations (almost twenty of them in this simple app) for filter‐
ing, displaying, and modifying service data.

After building and releasing our API client, we’ll update the backend service and see
how that affects our client in production. Ideally, we’d like that client to ‘just work’
and assume any new features of the updated backend. But, anyone who has built
these RPC-CRUD clients knows that’s not at all likely. At least we’d like the app to not
crash when the backend changes and even that is an iffy proposition. We’ll work
through the changes needed to keep our Web API client up-to-date and close the
chapter with some observations before we move on to our next project.

So, let’s get started.

The JSON Web API Client
For many readers, the typical JSON Web API Client is nothing new — its the style
that most Web APIs are designed to support right now. We’ll review some of the basic
elements of this client and then, after a short detour into the service code to explore
JSON API output, we’ll work through the coding needed to create a fully-functional
JSON Web API client. Along the way we’ll learn how the JSON client needs to handle
important elements such as:

• Recognizing the OBJECTS in responses
• Constructing ADDRESSES (the URLs) for interacting with the service

36 | Chapter 2: JSON Clients

www.it-ebooks.info

http://www.it-ebooks.info/

• Handling ACTIONS such as filtering, editing or deleting data

The OAA Challenge

Throughout the book I’ll refer to this as the OAA Challenge (as in
OBJECTS, ADDRESSES, and ACTIONS). We’ll see that every Web
API client app needs to deal with them and, especially when we
start looking at the hypermedia-style clients, there are varying ways
to handle this challenge.

Let’s take a minute to review each of these three elements before starting to look at the
way client apps deal with the.

Objects
One of the most important things that JSON Web API clients need to deal with are
the JSON objects that appear in responses. Most JSON Web APIs expose a unique
object model via the responses. Before you can even start using the API in any impor‐
tant way, you need to know (and support) the object model. Sometimes, this can get
rather elaborate, too.

The JSON Web API Client | 37

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2-1. Screenshot of Twitter’s JSON Object Documentation

As of this writing, the Twitter(c) API Overview page lists five baseline objects:

• Users
• Tweets
• Entities
• Entities in Objects
• Places

Many of these objects contain nested dictionary and array objects as well. And there
are several complete sets of JSON objects for the Twitter API for their streaming ser‐
vice, Ad service, and others.

Recognizing Objects

Lucky for us, the TPS Web API has only two main objects (Task and User) and each
of them are just a set of name-value pairs. This simple design makes our sample apps
easy to work with and explore. However, most non-trivial production apps are likely
to have several objects and tens (possibly hundreds) of properties.

38 | Chapter 2: JSON Clients

www.it-ebooks.info

http://www.it-ebooks.info/

Currently, the TPS Web API responses are simple arrays:

{
 "task": [
 {
 "id": "137h96l7mpv",
 "title": "LAX",
 "completeFlag": "true",
 "assignedUser": "bob",
 "dateCreated": "2016-01-14T17:48:42.083Z",
 "dateUpdated": "2016-01-27T22:03:02.850Z"
 },
 {
 "id": "1gg1v4x46cf",
 "title": "YVR",
 "completeFlag": "false",
 "assignedUser": "carol",
 "dateCreated": "2016-01-14T18:03:18.804Z",
 "dateUpdated": "2016-01-27T17:45:46.597Z"
 },
 more TASK objects here
]
 }

Our client app will need to recognize the "task" array name and act accordingly at
runtime. One good way to do this is to use the object identifier as a context switch.
When our app ‘sees’ "task":[…] in the response, it will switch to ‘task-mode’ and dis‐
play the data (and possible actions) related to tasks. When the server response con‐
tains "user":[…] the app can switch to ‘user-mode’. Of course, our app won’t know
what to do if a service response contains "note ":[…] or some other unknown con‐
text value. For now, we’ll need to ignore anything we don’t recognize.

Displaying Data
And just knowing the objects and their properties is not enough. Client applications
also need to know how to deal with them when they “show up” in an API response.
For example, whether to show the data, which properties to display, the human
prompts associated with the data, etc.

For example, the Task object emitted by the TPS Web API looks like this:

{
 "id": "137h96l7mpv",
 "title": "Review API Design",
 "completeFlag": "false",
 "assignedUser": "bob",
 "dateCreated": "2016-05-14T17:48:42.083Z",
 "dateUpdated": "2016-05-27T22:03:02.850Z"
},

The JSON Web API Client | 39

www.it-ebooks.info

http://www.it-ebooks.info/

For our client app, we’ve decided to not display the dateCreated and dateUpdated
fields. In fact, we’ll need to keep track of which fields to hide and which to show for
all the TPS objects.

We also need to decide which prompts to display for each property in the TPS Task
and User objects. Most of the time, client-side developers need to keep an internal set
of prompts (possibly even tagged for more than one language) and map those
prompts to the property names at runtime. For our simple app, we’ll just use a CSS
trick to capitalize the property names when displaying them as prompts (see callout
#1 below).

span.prompt {
 display:block;
 width:125px;
 font-weight:bold;
 text-align:right;

 text-transform:capitalize;
}

This works because we only need to support a single language and we’re just working
with a simple demo app. Production apps will need more attention to detail on this
point.

So, our client app will keep track of all the important JSON objects coming from the
server, will know how to “handle” each of them, and will know which properties to
display and what prompts are associated with them.

The next thing to deal with is the object’s addresses — their URLs.

Addresses
Most JSON RPC-CRUD API responses don’t include URLs — the addresses of the
objects and arrays the client application is processing. Instead, the URL information
is written up in human-readable documentation and it is up to the developer to work
out the details. Often this involves hard-coding URLs (or URL templates) into the
app, associating those addresses with objects and collections at runtime, and resolving
any parameters in the URL templates before actually using them in the app.

The number of URLs and templates in an API can be very large. For example, using
the Twitter API (mentioned above) as an example, there are close to 100 URL end‐
points displayed on just one page of the Twitter API documentation (see screenshot
below).

40 | Chapter 2: JSON Clients

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2-2. Screenshot of Twitter’s JSON API Documentation

While it is likely a single API client will not need to handle all 97 of the URLs listed
on that page, any client wanting to do more than one or two things will need to deal
with dozens of them. And, as I mentioned before, this list does not include the URLs
for Twitter’s streaming API, their Ad API, or other API sets they offer.

For the TPS Web API, there are 17 URLs and templates to deal with. They’re listed in
Table 2 of chapter XXX. (TK:fix). We’ll need to sort out which addresses belong to
each context object (Task or User) and which of them are more than simple actions
(e.g. HTTP POST, PUT, and DELETE actions).

There are many different ways of handling URLs and templates for JSON Web APIs.
The approach I’ll use in our sample app is to create a JSON dictionary of all the URLs
for each object. For example, the code below shows how I’ll ‘memorize’ some of the
Task operations. Note I included a prompt element for use when displaying these
URLs as links in the client UI.

actions.task = {
 tasks: {href:"/task/", prompt:"All Tasks"},
 active: {href:"/task/?completeFlag=false", prompt:"Active Tasks"},

The JSON Web API Client | 41

www.it-ebooks.info

http://www.it-ebooks.info/

 closed: {href:"/task/?completeFlag=true", prompt:"Completed Tasks"},
}

I’ll also need to keep some information on when to display links. Should they appear
on every page? Just on the pages associated with Tasks? Only when a single Task is
displayed? My solution is to use an additional property of my address list called tar
get which is set to values such as "all" or "list" or "single-item", etc. We’ll see
that a bit later in this chapter.

So, objects and addresses. That’s pretty good, but that’s not enough. We also need to
know the details on actions that involve query parameters and actions that require
construction of request bodies (e.g. POST, and PUT).

Actions
The third important element that Web API clients need to deal with are actions that
include query parameters or require HTTP bodies — the filters and write operations
of a Web API. Just like the URLs, this information is written up in human-readable
documentation and needs to be translated into client-side code.

The common approach in documentation is to list the URL, the HTTP method, and
parameters that can be passed including any validation rules for the inputs, etc. Keep‐
ing with the Twitter theme, Twitter’s API for updating existing lists takes up to seven
parameters and looks like this in the documentation:

42 | Chapter 2: JSON Clients

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2-3. Screenshot of Twitter’s Update List API Documentation

The documentation for our TPS Web API appears in Table 2 in chapter XX(TK:fix).
Similar to the Twitter API documentation, the TPS docs show the URL, the method,
and the set of parameters. This all needs to be “baked” into the Web API client app,
too.

There are many different ways to encode action information into client apps; from
hard-coding it into the app, keeping it as meta-data in a separate local file, or even as

The JSON Web API Client | 43

www.it-ebooks.info

http://www.it-ebooks.info/

a remote configuration file sent with the JSON response. For our TPS client, I’ll use
an approach similar to the one I used when handling simple URLs (see section
above).

For example, the UserAdd action looks like this in the TPS documentation:

Table 2-1. TPS UserAdd Action

Operation URL Method Returns Inputs

UserAdd /user/ POST UserList nick,

password,

name

And the Web API client app will store that information in the actions element (see
the code below). Note the pattern property information comes from another part of
the TPS documentation (Table 4 (TK??)).

actions.user = {
 add: {
 href:"/user/",
 prompt:"Add User",
 method:"POST",
 args:{
 nick: {
 value:"",
 prompt:"Nickname",
 required:true,
 pattern:"[a-zA-Z0-9]+"
 },
 password: {
 value:"",
 prompt:"Password",
 required:true,
 pattern:"[a-zA-Z0-9!@#$%^&*-]+"
 },
 name: {
 value:"",
 prompt:"Full Name",
 required:true
 }
 }
 }
}

And this kind of information needs to be handled for all the actions your client app
needs to perform. In the TPS Web API, that is 17 actions. A non-trivial app will need
to handle quite a few more.

44 | Chapter 2: JSON Clients

www.it-ebooks.info

http://www.it-ebooks.info/

Quick Summary
So know we have a good sense of what a Web API client for a JSON RPC-CRUD style
API will need to deal with. Along with the usual code for requests, parsing, and ren‐
dering responses, every JSON API client will also need to know how to handle:

• Key OBJECTS unique to each API
• ADDRESSES (URLs and URL templates) for all the actions of the API
• ACTION details including HTTP methods and arguments for all non-trivial

actions including HTTP POST, PUT, and DELETE requests.

With this in mind, we can now dig into the actual code for the JSON Web API client.

The JSON SPA Client
Now we’re ready to walk through the JSON Web API client app. We’ll look at the
HTML Container for the single-page app (SPA), the top-level request, parse, render
loop, and check out how this client app handles the three things we reviewed above:
Objects, Addresses, and Actions. Along the way we’ll see the JSON Client in action
and look ahead to see how it will deal with backend API changes.

The source code for the TPS JSON Web API client can be found in
the associated github repo here: https://github.com/RWCBook/json-
client. A running version of the app described in this chapter can be
found here: http://rwcbook03.herokuapp.com/files/json-client.html
(TK: check URLs)

Throughout the book, I’ll be showing examples of Single-Page Apps or SPAs hosted
within a browser. Also, I chose to build all the apps for this book without using one of
the many javscript frameworks in order to make it easier for you to see the code that
matters. So, the code here is not production ready because I wrote it for this book.
But making it production-ready is just a matter of making it bullet-proof and you
don’t need any fancy frameworks for that.

The HTML Container
The SPA client created for the TPS Web API starts with a single HTML document.
This document acts as the container for the entire API client application. Once the
intial HTML is loaded, all other requests and responses will be handled by the runing
javascript code parsing and rendering the JSON objects returned from the TPS Web
API service.

The HTML container looks like this:

The JSON SPA Client | 45

www.it-ebooks.info

https://github.com/RWCBook/json-client
https://github.com/RWCBook/json-client
http://rwcbook03.herokuapp.com/files/json-client.html
http://www.it-ebooks.info/

<!DOCTYPE html>
<html>
 <head>
 <title>JSON</title>

 <link href="json-client.css" rel="stylesheet" />
 </head>
 <body>

 <h1 id="title"></h1>
 <div id="toplinks"></div>
 <div id="content"></div>
 <div id="actions"></div>
 <div id="form"></div>
 <div id="items"></div>
 <div>
 <pre id="dump"></pre>
 </div>
 </body>

 <script src="dom-help.js">//na </script>

 <script src="json-client.js">//na </script>
 <script>
 window.onload = function() {
 var pg = json();

 pg.init("/home/", "TPS - Task Processing System");
 }
 </script>
</html>

As you can see from the HTML listing above, there is not much to talk about in this
document. The part that all the code will be paying attention to starts at callout #1 —
the seven DIV elements. Each of them has a unique identifier and purpose at runtime.
You can figure most of that out just by reading the names. The last DIV actually enclo‐
ses a <pre> tag that will hold the full ‘dump’ of the JSON responses at runtime. This is
a handy kind of ‘debug display’ in case you need it.

Along with the HTML, there is a single CSS file (callout #2) and two Javascript refer‐
ences; a simple DOM library (callout #3) and the complete client-side code (callout
#4). We’ll inspect the json-client.js library throughout this section of the chapter.

Finally, once the page is loaded, a single function is executed (see callout #5). This
initializes the client with a starting URL and (optionally) a title string). The URL
shown here works fine when the client app is hosted in the same web domain as the
TPS Web API. If you want to run the client app from a separate domain, all you need
to do is update this intial URL and app will work just fine.

46 | Chapter 2: JSON Clients

www.it-ebooks.info

http://www.it-ebooks.info/

The source code for the TPS JSON Web API client can be found in
the associated github repo here: https://github.com/RWCBook/json-
client. A running version of the app described in this chapter can be
found here: http://rwcbook03.herokuapp.com/files/json-client.html
(TK: check URLs)

So, let’s look inside the json-client.js library and see how it works.

The Top-Level Parse Loop
The client app is designed to act in a simple, repeating loop that looks like this:

1. Execute an HTTP request
2. Store the JSON response in memory
3. Inspect the response for context
4. Walk through the response and render the context-related information on screen

We talked about context earlier in the chapter. This client is expecting multiple cus‐
tom object models from the TPS Web API (Task and User) and uses the returned
object model as context in deciding how to parse and render the response.

// init library and start
function init(url, title) {
 if(!url || url==='') {
 alert('*** ERROR:\n\nMUST pass starting URL to the library');
 }
 else {
 g.title = title||"JSON Client";
 g.url = url;

 req(g.url,"get");
 }
}

// process loop
function parseMsg() {
 setContext();
 toplinks();
 content();
 items();
 actions();
}

When the app first loads, the init function is called (see callout #1). That validates
the initial URL, stores it, and eventually makes the first HTTP request to that URL
(callout #2). Once the response returns (not shown here) the parseMsg function is
called (clalout #3) and that starts the parse/render loop.

The JSON SPA Client | 47

www.it-ebooks.info

https://github.com/RWCBook/json-client
https://github.com/RWCBook/json-client
http://rwcbook03.herokuapp.com/files/json-client.html
http://www.it-ebooks.info/

The parseMsg function does a handful of things. First, it calls setContext to inspect
the response and set the app’s current context so that it knows how to interpret the the
response. For our app, a global context variable is set to "task", "user", or "home".
Next, the page’s top links are located and rendered (toplinks) and any HTML con‐
tent is displayed (content). The items function finds all the objects in the response
(Task or User) and renders them on the screen and the actions function constructs
all the links and forms appropriate for the current context.

That’s quite a bit in a single function and we’ll get into some details of that in just a
bit. But first, let’s look at how the JSON client is keeping track of the TPS objects,
addresses, and actions that were written up in the human documentation.

Objects, Addresses, and Actions
Since the TPS Web API is just returning custom JSON objects and arrays, our client
app needs to know what those objects are, how to address them, and what actions are
possible with them.

TPS Objects

The TPS objects (Task and User) are simple name-value pairs. So, all our client app
needs to know are the properties of each object that need to be rendered on screen.
For example, all TPS objects have dateCreated and dateUpdated properties, but our
client doesn’t need to deal with them.

This app uses a simple array to contain all the object properties it needs to know
about:

g.fields.task = ["id","title","completeFlag","assignedUser"];
g.fields.user = ["nick","name","password"];

Now, whenever parsing incoming objects, the client app will compare the property on
the object with its own list of properties and ignore any incoming property it doesn’t
already ‘know’ about.

An example of how this works can be seen in the code that handles on-screen render‐
ing of objects in the response.

// handle item collection
function items() {
 var rsp, flds, elm, coll;
 var ul, li, dl, dt, dd, p;

 rsp = g.rsp[g.context];
 flds = g.fields[g.context];

 elm = d.find("items");
 d.clear(elm);
 ul = d.node("ul");

48 | Chapter 2: JSON Clients

www.it-ebooks.info

http://www.it-ebooks.info/

 coll = rsp;
 for(var item of coll) {
 li = d.node("li");
 dl = d.node("dl");
 dt = d.node("dt");

 // emit the data elements
 dd = d.node("dd");

 for(var f of flds) {
 p = d.data({text:f, value:item[f]});
 d.push(p,dd);
 }

 d.push(dt,dl);
 d.push(dd,dl);
 d.push(dl,li);
 d.push(li,ul);
 }

 d.push(ul,elm);

}

The code examples for this book use the ES6 for..of iterator.
When this book first went to press in early 2016 for..of was sup‐
ported in some browsers, but not all. I used the Chrome browser
(both the Google release and the Chromium open source release)
while writing the examples and they all ran fine. Be sure to check
your browser’s support for the for..of iterator.

Note (in callout #1) the first step in the routine is to use the shared context value to
locate the data in the response (rsp) and select the internal properties to use when
inspecting the data (flds). This information is used (in callout #2) to make sure to
only render the fields the client decides is appropriate.

Figure 2-4. Rendering Task Items in the JSON Client

The JSON SPA Client | 49

www.it-ebooks.info

http://www.it-ebooks.info/

Addresses and Actions
This client app stores both the addresses (URLs) and actions (HTTP method and
parameter information) in a single internal collection called actions. There is addi‐
tional metadata about each action that indicates when it should be rendered (based
on context information) and how it should be executed (e.g. as a simple link, via, a
form, or a direct HTTP method call).

The list of actions for the TPS Web API is rather long (17 separate actions) but the
code snippet below gives you a good idea of how they are stored in the client app.

// task context actions
g.actions.task = {

 tasks: {target:"app", func:httpGet, href:"/task/", prompt:"Tasks"},
 active: {target:"list", func:httpGet, href:"/task/?completeFlag=false",
 prompt:"Active Tasks"
 },

 byTitle: {target:"list", func:jsonForm, href:"/task",
 prompt:"By Title", method:"GET",
 args:{
 title: {value:"", prompt:"Title", required:true}
 }
 },

 add: {target:"list", func:jsonForm, href:"/task/",
 prompt:"Add Task", method:"POST",
 args:{
 title: {value:"", prompt:"Title", required:true},
 completeFlag: {value:"", prompt:"completeFlag"}
 }
 },
 item: {target:"item", func:httpGet, href:"/task/{id}", prompt:"Item"},

 edit: {target:"single", func:jsonForm, href:"/task/{id}",
 prompt:"Edit", method:"PUT",
 args:{
 id: {value:"{id}", prompt:"Id", readOnly:true},
 title: {value:"{title}", prompt:"Title", required:true},
 completeFlag: {value:"{completeFlag}", prompt:"completeFlag"}
 }
 },

 del: {target:"single", func:httpDelete, href:"/task/{id}",
 prompt:"Delete", method:"DELETE", args:{}
 },
};

In the code snippet above, you can see a simple safe, read-only action (callout #1) as
well as a safe action that required user input (callout #2). There are also the classic
CRUD actions (#3, #4, and #5) with the expected HTTP method names, prompts,
and (where appropriate) argument lists. These action definitions are selected based
on runtim context information. For example the target property indicates which

50 | Chapter 2: JSON Clients

www.it-ebooks.info

http://www.it-ebooks.info/

actions are appropriate for app-level, list-level, item-level, and even single-item level
context.

Here’s an example of the code that uses context information and scans the list of
actions to render ‘list-level’ links.

// handle list-level actions
function actions() {
 var actions;
 var elm, coll;
 var ul, li, a;

 elm = d.find("actions");
 d.clear(elm);
 ul = d.node("ul");

 actions = g.actions[g.context];
 for(var act in actions) {
 link = actions[act];

 if(link.target==="list") {
 li = d.node("li");
 a = d.anchor({
 href:link.href,
 rel:"collection",
 className:"action",
 text:link.prompt
 });
 a.onclick = link.func;
 a.setAttribute("method",(link.method||"GET"));
 a.setAttribute("args",(link.args?JSON.stringify(link.args):"{}"));
 d.push(a,li);
 d.push(li, ul);
 }
 }
 d.push(ul, elm);
}

You can see (in the code above) that both the object context (callout #1) and the
internal render context (#2) are used to select only the links appropriate for display at
the moment.

The JSON SPA Client | 51

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2-5. JSON Client Rendering a Form

The actions that contain argument details will be rendered at runtime using HTML
<form> elements. The code that handles this is listed below:

// render inputs

coll = JSON.parse(link.getAttribute("args"));
for(var prop in coll) {
 val = coll[prop].value;
 if(rsp[0][prop]) {

 val = val.replace("{"+prop+"}",rsp[0][prop]);
 }

 p = d.input({
 prompt:coll[prop].prompt,
 name:prop,
 value:val,
 required:coll[prop].required,
 readOnly:coll[prop].readOnly,
 pattern:coll[prop].pattern
 });
 d.push(p,fs);
}

In the small snippet above, you can see the collection of args (callout #1) from the
action definition is used to create HTML form inputs. At callout #2 you can see that
any current object is used to populate the value of the inputs before the actual HTML
input element is created (callout #3). Note the inclusion of the HTML5 properties
required, readonly, and pattern in order to improve the client-side user experience,
too.

Quick Summary

There is more to the json-client.js library that we won’t cover here including all
the Ajax-related code to handle HTTP requests and responses. Even with all the low-
level HTTP code, the total size of the library is around 500 lines of Javascript — and

52 | Chapter 2: JSON Clients

www.it-ebooks.info

http://www.it-ebooks.info/

that includes extensive comments. In fact, the breakdown of the various parts of the
client are worth noting.

HTTP-level Handlers
For example, the Ajax-related low-level HTTP code takes up about 100 lines.
This code would typically be handled by jQuery or other framework libraries.
Also, this code will not grow or shrink as the number of unique objects,
addresses, and actions changes within the Web API. The HTTP-handling code is
a fixed size.

Parsing and Rendering
The heart of the JSON Client code is about 300 lines that handle the parsing and
rendering of the user interface. That content is also unlikely to change as the Web
API objects and functionality changes. However, this part of the codebase could
grow as more UX features are added to the library.

Web API Objects, and Actions
Finally, the other large portions of the code library is the 150 or so lines of Java‐
script used to declare the TPS web API objects, address, and action configura‐
tion. This is the part of the library that will be directly affected by the Web API
objects and actions. As the API functionality grows, this code MUST grow, too.

This last item points to an important aspect of JSON API clients: changing the back‐
end API will force the client frontend to change, too. I’ve done my best to isolate those
changes to a single section of the library, but I can’t eliminate the need for these
changes to occur since the client code has all the server objects, addresses, and actions
‘baked’ directly into the code.

So, let’s make some changes to the backend Web API and see how this JSON Client
handles it.

Dealing with Change
Throughout the book, I’ll be introducing backend changes to service APIs after the
client application has been completed (and presumably released into production). I’m
doing this to explore how various API client implementations deal with change and
to see what it takes to create API clients that can adapt to selected changes in the API
at runtime.

Change is a fundamental part of the Web. Several key design aspects of the HTTP
protocol and HTML make change not only easy to do but also easy to support
without breaking existing HTTP clients. The content of HTML pages can change
without the need to re-code and release new HTML browsers. The HTTP protocol
has undergone a handful of updates over the last 25 years without crashing existing

Dealing with Change | 53

www.it-ebooks.info

http://www.it-ebooks.info/

Web servers or requiring them to all be updated at the sime time. Change is essen‐
tially ‘designed-in’ to the WWW.

Unfortunately, most Web APIs today do not share this fundamental ability to support
change over time. Changes on the server-side of a Web API usually requires changes
on the client-side. Sometimes existing production API clients will even crash or oper‐
ate improperly once the server-side code has been changed. The problem has become
so common that most Web developers resort to using explicit version numbers on
Web APIs in order to make it easy for developers to know when something has
changed — usually so developers and turn around and re-code and deploy their pro‐
duction client apps in order to maintain compatibility with the service.

So, let’s make some changes to the TPS Web API and see how our JSON Client reacts.

The source code for the TPS JSON Web API service can be found
in the associated github repo here: https://github.com/RWCBook/
json-crud-v2. A running version of the service can be found here:
http://rwcbook04.herokuapp.com/task/ (TK: check URLs)

Adding a Field and Filter
A common change that can occur in a production API is adding a new field to the
data storage. For example, the team at BigCo working on the Web API might decide
to add a tag field to the Task storage object. This will allow users to ‘tag’ tasks with
common keywords and then recall all the tasks with the same keyword.

Adding the tag field means we’ll probably need a new search option, too: TaskFilter
ByTag. It would take a single parameter (a string) and use that to search all the task
record’s tag fields, returning all Task objects where the search value is contained in
the tag field.

Changing the TPS Web API

The process of changing the TPS Web API to support the new tag functionality is not
too complex. We’ll need to:

• Add the tag property to the Task storage definition
• Introduce a new query for Task storage and expost that via HTTP

To add the new tag field to the server’s storage support, we first need to update line of
code that defines the valid fields for the task object (see callout #1).

 // task-component.js
 // valid fields for this record
 props = [

54 | Chapter 2: JSON Clients

www.it-ebooks.info

https://github.com/RWCBook/json-crud-v2
https://github.com/RWCBook/json-crud-v2
http://rwcbook04.herokuapp.com/task/
http://www.it-ebooks.info/

 "id",
 "title",

 "tag",
 "completeFlag",
 "assignedUser",
 "dateCreated",
 "dateUpdated"
];

Next, we need to modify te validation rules for adding and updating task objects on
the server. The code snippet below shows the addTask routine with the new tag field
(see callout #1 below). A similar change was made to the updateTask routine, too.

function addTask(elm, task, props) {
 var rtn, item;

 item = {}

 item.tags = (task.tags||"");
 item.title = (task.title||"");
 item.assignedUser = (task.assignedUser||"");
 item.completeFlag = (task.completeFlag||"false");
 if(item.completeFlag!=="false" && item.completeFlag!=="true") {
 item.completeFlag="false";
 }
 if(item.title === "") {
 rtn = utils.exception("Missing Title");
 }
 else {
 storage(elm, 'add', utils.setProps(item, props));
 }

 return rtn;
}

Testing the Updated TPS Web API

With these changes in place, we can use the curl command-line app to validate our
changes. A command to create a record with the tag value set to "test" looks like
this:

curl -X POST -H "content-type:application/json" -d
 '{"title":"Run remote client tests","tags":"test"}'
 http://localhost:8181/task/

and creates a new task record that looks like this:

{
 "id": "1sog9t9g1ob",
 "title": "Run server-side tests",
 "tags": "test",
 "completeFlag": "false",
 "assignedUser": "",

Dealing with Change | 55

www.it-ebooks.info

http://www.it-ebooks.info/

 "dateCreated": "2016-01-28T07:16:53.044Z",
 "dateUpdated": "2016-01-28T07:16:53.044Z"
}

Assuming several new records were created, executing the filter query would look
like this:

curl http://localhost:8181/task/?tags=test

would returns one or more task records with the tag value that contains "test"

With the TPS Web API updated and validated, we next need to see how the JSON
API Client handles the change in production.

For completeness, we should also update the TPS Web API docu‐
mentation. We’ll skip that step right now, though.

Testing the JSON API Client

The easiest way to test the JSON API Client’s support for the new tag field and filter
option is to simply run the client and check the results. Below is a screenshot from
the JSON API Client making a request to the new TPS Web API server.

56 | Chapter 2: JSON Clients

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2-6. JSON API Client w/o Tag Support

As you can see from the screenshot, even though the new task records appear in the
client, the tag field is missing from the display as well as the new filter option. The
good news is our JSON client didn’t crash when the new feature was added. The bad
news is our client simply ignored the new functionality.

The only way our JSON client will be able to take advantage of this new option is to
re-code and redeploy a new version of the app into production.

Coding a New Client
To get the JSON API Client to reflect the new tag support, we need to update the
client’s object and action data. The client needs to know about the tag feature before it
can use it. Because our JSON Client was designed to keep the object and action data
separate from the rest of the library, adding the new feature is relatively easy.

First, we need to update the client’s object properties (callout #1):

// task fields
g.fields.task = [
 "id",

Coding a New Client | 57

www.it-ebooks.info

http://www.it-ebooks.info/

 "title",

 "tags",
 "completeFlag",
 "assignedUser"
];

Next, we need to add the new filter option to the list of the client’s task.actions:

byTags: {
 target:"list",
 func:jsonForm,
 href:"/task",
 prompt:"By Tag",
 method:"GET",
 args:{
 tags: {value:"", prompt:"Tags", required:true}
 }
 }

and update the addTask and updateTask action definitions (callout #1):

add: {
 target:"list",
 func:jsonForm,
 href:"/task/",
 prompt:"Add Task",
 method:"POST",
 args:{
 title: {value:"", prompt:"Title", required:true},

 tags: {value:"", prompt:"Tags"},
 completeFlag: {value:"", prompt:"completeFlag"}
 }
 },
edit: {
 target:"single",
 func:jsonForm,
 href:"/task/{id}",
 prompt:"Edit",
 method:"PUT",
 args:{
 id: {value:"{id}", prompt:"Id", readOnly:true},
 title: {value:"{title}", prompt:"Title", required:true},

 tags: {value:"{tags}", prompt:"Tags"},
 completeFlag: {value:"{completeFlag}", prompt:"completeFlag"}
 }
 }

With these changes in place, we can now see the JSON Client supports the new tag
features of the TPS Web API.

58 | Chapter 2: JSON Clients

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2-7. JSON Client V2 Supports Tagging

You may have noticed that the changes we made to the client app look similar to the
changes we made in the server API. That’s not by accident. Typical JSON APIs
require the client app and the server-side code share the same object/address/action
profiles in order to keep in step with each other. That means every new feature on the
service requires a new release for the client.

The original JSON Client app we created was able to keep offering the same function‐
ality without an update because the TPS Web API didn’t introduce breaking changes.
If, for example, the service had changed the addTask and updateTask operations to
make the tag field required when adding/editing Task objects, the original client app
would no longer be able to save Tasks. Since the service made the tag field an
optional input, the initial client app was still able to function; it just couldn’t take
advantage of the new feature. Essentially, when API services change, the best client
apps can hope for is that services will not make breaking changes to the API (e.g.
removing fields/functions, changing existing functions, or adding new required
fields, etc.).

However, there are ways to design service APIs that allow clients to adapt to changing
responses — even have the ability to expose new features (like the tag field and filter)
w/o the need for re-coding the client. We’ll explore that in future chapters.

Summary
In this chapter we reviewed the key aspects of JSON API Clients including the need
for them to deal with:

• Handle key API OBJECTS in the service model
• Construct and manage service ADDRESSES or URLs

Summary | 59

www.it-ebooks.info

http://www.it-ebooks.info/

• Know all the ACTIONS metadata such as parameters, HTTP methods, and input
rules

We then did a walk-through of our sample JSON Client and saw how it handled the
objects/addresses/actions challenge. We also noted that the client app was written
using a simple loop pattern that made a request, parsed the response, and (based on
context information) rendered information to the screen for a human to deal with.
The fully-functional SPA client requires just over 500 lines of Javascript — even with
all the low-level HTTP routines.

JSON Clients and the OAA Challenge

It turns out clients that receive only plain JSON responses, don’t do
well on our OAA Challenge. These clients either break or ignore
changes to any of the three elements. They need to be re-coded and
redeployed any time an OBJECT, ADDRESS, or ACTION is added,
removed, or changed.

Finally, we introduced a new feature on the TPS Web API service and saw that our
JSON client ignored the new feature. Luckly, the service was updated in a backward-
compatible way and our client didn’t crash or lose functionality. But we had to re-code
and redeploy the client in order to take advantage of the new tag feature.

Bob and Carol
“Hey, Bob. Just stopping by to review our experi‐
ences with the TPS Web API Project.”

“Hi, Carol. Good to see you. Let’s get started.”

“First, we certainly learned a lot in the last week. It
took some doing, but even with handling close to
20 operations in this API, we were able to get our

JSON client SPA implementation down to around 500 lines
of Javascript.”

“That’s pretty impressive. You were defintiely able
to handle all the documented features details, too.
Testing the functionality of the initial client went

really well.”

60 | Chapter 2: JSON Clients

www.it-ebooks.info

http://www.it-ebooks.info/

“Right, but that brings up our major disappoint‐
ment for this project, too. Changes to the backend
made our client app obsolete.”

“Yeah, sorry about that, Carol. After we released
the API into production some of the stakeholders

came back to us and asked for that tagging feature.
We had to add that later.”

“Well, at least you made sure to add the new fea‐
ture in a way that didn’t break our JSON client.
But, as you know, none of the customers could see

the new tag field or filter until we re-coded and redeployed
our JSON client.”

“Yep. Hopefully, that won’t happen too often.”

“Well, Bob, I’m a bit concerned that it will keep
happening. I mean, change is inevitable, right?”

“I guess that’s right. But we can’t stop people asking
for new features. I guess this is just they way the
Web works. We keep updating and re-releasing

from now on.”

“I’m not so sure about that, Bob. I think we need to
look into another way to build Web APIs and cli‐
ent apps. One that does a better job of supporting

changes over time.”

“Well, Carol, I’d like to hear more about that. But
right now, I need to meet w/ my server-side team

to review some more changes we need to make to
the API.”

“More changes? OK, Bob. Talk to you later.”

Summary | 61

www.it-ebooks.info

http://www.it-ebooks.info/

References
1. Twitter has poublished blog posts on both their initial SPA release and their sub‐

sequent redesign to improve then performance and reliability their web-based
client app.

2. You can learn more about Twitter’s API by reviewing the online Documentation
3. There is a nice ECMAScript compatibility chart hosted at https://

kangax.github.io/compat-table/es6/

62 | Chapter 2: JSON Clients

www.it-ebooks.info

https://blog.twitter.com/2010/the-tech-behind-the-new-twittercom
https://blog.twitter.com/2012/improving-performance-on-twittercom
https://dev.twitter.com/overview/documentation
https://kangax.github.io/compat-table/es6/
https://kangax.github.io/compat-table/es6/
http://www.it-ebooks.info/

CHAPTER 3

The Representor Pattern

“But it is a pipe.”
“No, it’s not,” I said. “It’s a drawing of a pipe. Get it? All representations of a thing are
inherently abstract. It’s very clever.”

—John Green, The Fault in Our Stars

Bob and Carol
“Hi, Carol. Wanted to drop by your office here and
see how things are going here in your new role.”

“Oh, hello Bob. I’m settling into your old office
rather nicely, I think. And the client-side work is

going well, too.”

“Great. I actually wanted to talk to you about some
server-side items that you and your team had been
working on before we switched roles. Specifically,

about implementing support for all these output formats.
See, while you had been doing a great HTML rendering, we
now need to start adding support for JSON.”

“Right, and some of the other teams were starting
to ask about support for additional registered for‐

mats like HAL, Collection+JSON, Siren, and so
forth. We were about to dig into that when the re-org hap‐

pened.”

63

www.it-ebooks.info

http://www.it-ebooks.info/

“Yep, your old colleagues have been bringing me
up to speed on this and, before we got too deep
into it, I wanted to check back with you and go

over your initial notes.”

“Well, I don’t know how much I can offer since we
had just begun our discovery. But you probably

have that material already, right?”

“Yes, I have some solid info on the available for‐
mats, and lots of feedback on which one is consid‐
ered `best', etc. But that’s not really important right

now. What I really wanted to review with you is some
implementation ideas -- how we’re actually going to do this
work.”

“Ok, Bob. Makes sense. What do you have so far?”

“Well, I was in this meeting yesterday where peo‐
ple were getting into heated debates about which
of these formats to support. There seems to be a

wide concensus on adding support for plain JSON objects
and there are also some people very adamant about sup‐
porting Collection+JSON or HAL or Siren -- some of the
so-called hypermedia formats. It got me to thinking that
this could be a real mess.”

“Well, that’s possible but, as I see it, you don’t really
need to decide which format to support. In fact, I

think that’s a losing strategy.”

“Wait, Carol, you lost me there. I don’t need to
decide on a format? That doesn’t sound right. I
mean, I need to implement an API format, right?”

“Well, you certainly have to implement a format,
but I don’t think you need to implement _just one_
format. That’s the point I am making here. Instead

of trying to get everyone to agree on a single format, the

64 | Chapter 3: The Representor Pattern

www.it-ebooks.info

http://www.it-ebooks.info/

better approach is to implement the service in a way that
makes supporting one or more formats trivial.”

“Hmmm. You mean diffuse the argument by say‐
ing `yes’ to everyone? That sounds like making no
decision at all. That sounds even worse to me than

picking one.”

“No, not at all. One of the things I was exploring
before the re-org was the notion of separating the

format from the internals of the API -- a kind of
loose-coupling approach to the output formats.”

“Oh, I get it. You were thinking of isolating the for‐
mat details from the rest of the implementation.
That way, the actual resolution of the format ques‐

tion doesn’t adversely affect the rest of the system.”

“Right, Bob. I got the idea from an old paper on
software modularity. I can’t recall which one, but I

think that’s in the notes you already have.”

“Ah, good. I’ll dig into those again. So, decoupling
the output format from the internal model of the
API itself means we can forge ahead with the inter‐

nal model even if we don’t yet have a single format selected.”

“Yep, and -- if you do it right -- I bet you can come
up with an implementation pattern that makes is

relatively easy to support more than one output
format for the same API. Now that would be something!”

“Huh, support multiple output formats cheaply
and easily? Yes, Carol, that would be something.
I’ll need to think about that, too. Ok, I need to get

back to the team and see what they think about all this.
We’ll let you know what we find.”

The Representor Pattern | 65

www.it-ebooks.info

http://www.it-ebooks.info/

“Sounds good, Bob. Talk to you soon.”

Almost every team starts out on the journey of implement APIs for the Web runs up
against the decision of which output format(s) to support. Most often, this decision is
a matter of accepting the current norms rather than any elaborate set of experiments
and research efforts. And that’s fine. Usually teams don’t have the time or energy to
go wandering through decades of material on software implementation and systems
engineering in order to decide which output format the API will use. Instead the cur‐
rent custom or fad is the one that wins the day.

And selecting a format is only part of the challenge. A more important consider is
just how the write services that implement output format support. Sometimes serv‐
ices are implement in a way that tightly binds the internal object model to the exter‐
nal output format. That means changes in the interal model leak out into the output
format and are likely to break client applications consuming the service.

That leads to another important challenge to face when dealing with messages passed
between API client/consumer and API service/provider: protecting against breakage.
Long ago, writers on softrware modularity offered clear advice on how to isolate parts
of a system that are likely to change often and impelment them in ways that made
changes to that aspect of the system relatively cheap, safe, and easy. keeping this in
mind is essential for building healthy and robust API programs.

So, there are a number of things to cover here and the first challenge to face is the
constant question ‘Which output format should we use for our API?’

XML or JSON: Pick a Side!
So you want to impelment an API, eh? Well, one of the first decisions you will face is
which output format to use. Today, almost everyone decides on JSON. Often with lit‐
tle to no discussion. That’s the power of current popularity — that the decision is
made without much contemplation. And it turns out selecting JSON may not be the
best choice or the only choice when it comes to your API output format.

Not surprisingly, the de facto choice for API output was not always JSON. All through
the late ninties and early 2000s, the common custom was to rely on output formats
based on the XML standard. At that time, XML had a strong history — HTML and
XML both had the same progenitor in SGML(ISO 8879:1986) — and there were lots
of tools and libraries geared to parsing and maniuplating XML documents. Both the
Simple Object Access Protocol (SOAP) specification and much of what would later be
known as the SOA (Service-Oriented Architecture) style started as XML-based efforts
for business computing.

66 | Chapter 3: The Representor Pattern

www.it-ebooks.info

http://www.it-ebooks.info/

XMLHttpRequest

One of the most important API-centric additions to the common
Web browser — the ability to make direct calls to services within a
single Web page — was called the XMLHttpRequest object because it
was assumed that these browser-initiated inline requests would be
returning XML documents. And they did in the beginning. But by
the mid 2000s the Javascript Object Notation (JSON) format would
overtake XML as the common way to transfer data between serv‐
ices and Web browsers. The format has changed, but the object
name never has.

But, as we all know, selecting XML for passing data between services and clients did
not end the format debate at all. Even while the XML-based Simple Object Access
Protocol (SOAP) document was being published as a W3C Note in May 2000, there
was another effort underway to standardize data-passing documents - the Javascript
Object Notation or JSON format.

Douglas Crockford is credited with specificying JSON in early 2001. Even though the
JSON RFC document (RFC627) was not published until 2006, the format had experi‐
enced wide use by that time and was gaining in popularity. As of this writing, JSON is
considered the default format for any new API. Recent informal polls and surveys
indicate few APIs today are being published using the XML output format and — at
least for now — there is no new format likely to undermine the current JSON popu‐
larity.

“I did not invent JSON”

In 20011, Douglas Crockford gave a talk he dubbed “The True
Story of JSON” and, in it, he said “I do not claim to have invented
JSON. … What I did was I found it, I named it, I described how it
was useful. … So, the idea’s been around there for a while. What I
did was I gave it a specification, and a little Web site.” He even
states that he saw an early example of JSON-like data-passing as
early as 1996 from the team that was working on the Netscape Web
browser.

Of course, XML and JSON are not the only formats to consider. For example, another
valuable format for passing data between parties is the Comma-Separated Value
(CSV) format. It was first standardized by the IETF in 2005 (RFC4180) but dates back
to the late 1960s as a common interchange format for computers. There are likely
going to be cases where an API will need to output CSV, too. For example, almost all
spreadsheet software can easily consume CSV documents and place them in columns
and rows with a high degreee of fidelity.

XML or JSON: Pick a Side! | 67

www.it-ebooks.info

http://www.it-ebooks.info/

Clearly the problem is not just deciding between XML and JSON.

The New Crop of Hypermedia Formats
Starting in the early 2010s, a new crop of formats emerged that offered more than just
structure for data, they included instructions on how to manipulate the data as well.
These are a set of formats I refer to as ‘Hypermedia Formats’. These formats represent
another trend in APIs and, as we will see later in the book, an valuable tool in creating
API-based services that can support a wide range of changes without breaking exist‐
ing clients. In some cases, they even allow client applications to ‘auto-magically’
acquire new features and behaviors without the need for re-writing and redeploying
client-side code.

But that’s getting ahead of the story a bit.

Atom Syndication and Publishing
Although most of the new hypermedia formats appeared on the sceen around 2010
and later, one format (the Atom Syndication Format) was standardized in 2005 as
RFC4287, it has similar roots as the SOAP initiative and is an entirely XML-based
specification. The Atom Format, along with the Atom Publishing Protocol
(RFC5023) in 2007, outline a system of publishing and editing Web resources that is
based on the common Create-Read-Update-Delete (CRUD) model of simple object
manipulation.

Atom documents were mostly used in read-only mode for news feeds and other sim‐
ple record-style output. However, several blog engines supported editing and publish‐
ing entries using Atom documents. There are also a number of registered format
extensions to handle things like paging and archiving (RFC5005), threads (RFC4685),
and licensing content (RFC4946). I don’t often see Atom used to support read/write
APIs on the WWW but still see it used in enterprise cases for handling outputs from
queues and other transaction-style APIs.

Atom is interesting because it is an XML-based format that was designed specifically
to add read/write semantics to the format. In other words, like HTML, it describes
rules for adding, editing, and deleting server data.

And, since the release of the Atom spcifications, a handful of other formats have been
published.

Other Hypermedia Formats
Starting in 2011, there was a rush of hypermedia-style formats published and regis‐
tered with the IANA. They all share a similar basic set of assumptions even though
each has unique strengths and focus on different challenges for API formats. I’ll cover
some of these at length later in the book but wanted to mention them here to provide

68 | Chapter 3: The Representor Pattern

www.it-ebooks.info

http://www.it-ebooks.info/

a solid background for dealing with the challenge of selecting and supporting formats
for APIs.

Hypermedia Application Lanugage (HAL)
The HAL format was registered with the Internet Authority for Names and
Addresses (IANA) in 2011 by Mike Kelly. Descrbied as “…a simple format that
gives a consistent and easy way to hyperlink between resources…”, HAL’s design
focus is on standardizing the way links are described and shared within messages.
HAL does not describe write semantics but does leverage the URI Templates spe‐
ficication (RFC6570) to describe query details inline. We’ll spend an entire chap‐
ter exploring (and using) this very popular hypermedia type.

Collection+JSON Format (Cj)
I published the Collection+JSON hypermedia format the same year as Mike
Kelly’s HAL (We had been sharing ideas back and forth for quite a while before
that). Unlike HAL, Cj supports detailed descriptions of the common Cread-
Read-Update-Delete (CRUD) semantics inline along with a way to describe input
metadata and errors. It is essentially a JSON-formatted fork of the Atom Publish‐
ing Protocol taht is focused on common list-management use cases. We’ll spend
time coding for Cj formats later in the book.

The Siren Format
The Siren format was created by Kevin Swiber and registered at the IANA in
2012. Siren"is a hypermedia format for representing entities with their associated
properties, children, and actions.” It has a very rich semantic model that supports
a wide range of HTTP verbs and it is currently used as the default format for the
Zetta Internet of Things platform. We’ll get a chance to dig into Siren later in the
book.

The Universal Basis for Exchanging Representations (UBER)
I released a working draft of the UBER format in 2014. Unlike the other hyper‐
media formats listed here, UBER does not have a strong message structure but,
instead, has just one element (called “data”) used for representing all types of
content in a document. It also has both a JSON and XML variant. UBER has not
yet been registered with the IANA and will not be covered in this book.

Other Formats
There are a number of other interesting hypermedia-style formats that have
recently appear that won’t be covered in this book. They include Jorn Wildt’s
Mason, the JSON API spec from Yehuda Katz, Cross-Platform Hypertext Lan‐
guage by Mike Stowe, and several others. I suspect that by the time you are read‐
ing this book there are new formats available, the status of some of the ones I list
here has changed, and possibly some of them listed here have disappeared.

XML or JSON: Pick a Side! | 69

www.it-ebooks.info

https://github.com/JornWildt/Mason
http://jsonapi.org/
https://github.com/mikestowe/CPHL
https://github.com/mikestowe/CPHL
http://www.it-ebooks.info/

Currently none of these new formats are a clear leader in the market and that, I think,
is a good thing. In my experience it is not common that an important universally val‐
uable message format appears “out of the blue” from a single author. It is more likely
that many formats from several design teams will be created, published, and tested in
real-world scenarios before any possible “winner” will emerge. And the eventual solu‐
tion will likely take several years to evolve and take several twists and turns along the
way.

So, even though many people have said to me “I just wish someone would pick just
one format so I would know what to use”, I don’t think that will happen any time
soon. It may seem like a good thing that you don’t have a choice to make, but that’s
rarely true in the long run.

We need to get used to the idea that there is not a “one API format to rule them all.”

The Fallacy of The Right One
So, despite all the new hypermedia formats out there and the continued use of XML
in enterprises — with the current trend pointing toward JSON as the common output
format — it would seem an easy decision, right? Any time you start implementing an
API, just use JSON and you’re done. Unfortunately, that’s almost never the way it
goes.

First, some industry verticals still rely only on XML and SOAP-based formats. If you
want to interact with them, you’ll need to drop your “JSON-only” approach and sup‐
port SOAP or some other custom XML-based formats. Examples might be partner
APIs that you work with on a regular basis, government or other standards-led efforts
that continue to focus on XML as their preferred format, and even third-party APIs
that you use to solve important business goals.

Second, many companies invested heavily in XML-based APIs over the last decade
and are often unwilling to rewrite these APIs just to change the output format from
then then-popular XML to the now-popular JSON format. Unless there is a clear
advantage to changing the output format (e.g. increased speed, new functionality, or
some other business metric), these XML-based services are not likely to change any
time soon.

Finally, some data storage systems are ‘XML-Native’ or default to outputing data as
XML documents (e.g. dbXML, MarkLogic, etc). While some of these services may
offer an option to output the data as JSON, many continue to focus on XML and the
only clear way of converting this data to JSON is to move it to other ‘JSON-Native’
data storage systems like MongoDB, CouchDB and others.

So, deciding on a single format for your team’s service may not be feasible. And, as
your point of view widens from a single team to multiple teams within your company,
multiple products within an enterprise, on up to the entire WWW itself, getting

70 | Chapter 3: The Representor Pattern

www.it-ebooks.info

http://www.it-ebooks.info/

everyone to agree to both produce and consume a single output format is not a rea‐
sonable goal.

As frustrating that this may be for team leaders and enterprise-level software archi‐
tects, there is no single “Right One” when it comes to output formats. While it may be
possible to control a single team’s decision (either through concensus or fiat), one’s
ability to exert this control wanes as the scope of the community grows.

And that means the way forward is to re-think the problem, not work harder at
implementing the same solution.

Re-Framing the Problem
One way to face a challenge that seems insurmountable is to apply the technique of
re-framing — to put the problem in a different light or from a new point of view.
Instead of working harder to come up with a solution to the percieved problem,
reframing encouages us to step ‘outside the frame’ and try change our perspectrive.
Sometimes this allows us to recognize the scenario as a completely different problem
— one that may have an easier or simpler solution.

Cognitive Reframing

The current use of the term reframing came from the cognitive
therapy work of Aaron T. Beck in the 1960s. As he was counseling
patients experiencing depression he hit upon the idea that patients
could be taught to become aware of negative thoughts as they arose
and to “examine and evaluate them”, even turn them into positive
thoughts. Intially called cognitive reframing, now the term is used
to describe any technique that helps us reflect on our thoughts and
situation and take a new perspective.

In our case (the challenge of selecting a single format for your APIs), it can help to
ask “Why do we need to decide on a single format?” or, to put it another way “Why
not support many formats for a single API?” Asking these questions gives us a chance
to lay out some of the reasons for and against supporting multiple formats. In this
way, we’ve side-stepped the challenge of picking one format. Now we’re focused on a
new aspect of the same problem. Why not support multiple formats?

Why is Supporting One Format ‘Better’?
The common pattern is to assume that selecting a single format is the preferred solu‐
tion. To that end, there are some typical justifications for this point of view:

One Format is Easier
Usually people make the case for supporting a single format for API output
because it is thought to be easier than supporting multiple formats. It may not be

XML or JSON: Pick a Side! | 71

www.it-ebooks.info

http://www.it-ebooks.info/

ideal to select just one format, but it is preferable to the cost of supporting more
than one. And this is a valid consideration. Often we work with programming
tools and libraries that make supporting multiple output formats costly in some
way (additional programming time, testing difficulty, runtime support issues,
etc).

Multiple Formats is Anarchy
There are other times when making the case for supporting more than one for‐
mat is precieved as making the case for supporting any format. In other words,
once you open the door for one additional format, you MUST support any for‐
mat that might be thought of at some point in the future.

The Format You Prefer is ‘Bad’
Sometimes, even in cases where multiple formats might be possible, some start to
offer value judgements for one or more of the suggested formats saying they are
(for any number of reasons) ‘bad’ or in some other way insufficient and should
not be included. This can turn into a ‘war of attrition’ that can prompt leadership
to just pick one and be done with the squabbling.

We Can’t Know What People Will Like in the Future Anyway
Another reason to argue for just one format is that selecting any group of formats
is bound to result in not select one or more formats that, at some future point,
will become very popular. If you can’t accurately predict which ones to pick for
the future, it’s a waste of time to pick any of them.

The list goes on with any number of variations. But the theme is usually the same.
You won’t be sure to pick the right formats, so just pick a single one and avoid the
costly mistakes of adding other formats no one will like or use in the future. The
underlying assumptions in these arguments is also generally the same. They look
something like this:

1. Supporting multiple formats is hard
2. There is no way to safely add formats over time without disrupting production

code
3. Selecting the right formats today is required (and is impossible)
4. Suppoting multiple formats to too costly when you don’t have guaranteed uptake.

And it turns out, these assumptions are not always true.

What Would it Take to Support Multiple Formats?
When reframing the problem from a new perspective, you get a chance to ask differ‐
ent questions and try out different approaches for a solution. One way of helping a
team reframe any challenge is to cast it as a “What would it take…” question. Essen‐

72 | Chapter 3: The Representor Pattern

www.it-ebooks.info

http://www.it-ebooks.info/

tially you ask the team to describe a scenario under which the suggested alternative
(in our case, supporting multiple output formats) would be a reasonable idea. For
example “What has to exists (or be made possible) in order to support multiple out‐
put formats for the same API?”

And it turns out that the assumptions listed above are a great starting point for setting
out a scenario under which supporing multiple formats for your API is reasonable.

For example, you might make the following statements:

1. Supporting multiple formats for the same API needs to be relatively easy to do.
2. We need to be able to safely add new format support over time without disrupt‐

ing production code (or existing clients).
3. We need some kind of consistent criteria for selecting which formats to add both

now and in the future.
4. Adding a format needs to be ‘cheap enough’ that, even it if turns out to be little-

used it is not a big deal.

Even though most of the statements here are qualitative criteria (“relatively easy”,
“cheap enough”, etc.) we can use the same patterns of judgement and evaluation on
the format challenge that we do when resolving other implementation-related chal‐
lenges such as What is an API resource?, Which HTTP method should we use? and oth‐
ers we face every day.

Luckily, there is a set of well-tested and documented programming patterns that we
can use as a test-case for implementing multiple format support for out APIs. And
they date back to some of the earliest work on software patterns in the 1980s.

The Representor Pattern
To explore what it would take to make supporting multiple output formats for APIs
we need to work on a couple things. For a start, we should try to make it 1) Relatively
easy initially and 2) Safe to add new formats after production release. I’ve found the
first task is to clearly separate the work for format support from the actual functional‐
ity of the API. Making sure that you can continue to design and implement the basic
API functionality (e.g. managing users, editing content, processing purchases, etc.)
without tightly binding to an output format will go a long way toward making multi‐
ple format support safe and easy — even after initial release of your API into produc‐
tion.

The other challenge for this kind of work is to turn the process of converting internal
domain data (e.g. data graphs and action details) to an output format into a consis‐
tent algorithm that works well for a wide range of formats. This will require some
basic software pattern implementation as well as an ability to deal with a ‘less than

The Representor Pattern | 73

www.it-ebooks.info

http://www.it-ebooks.info/

100% fidelity’ between the domain model and the output model. We deal with this
every day with HTML (HTML doesn’t know anything about objects or strong typing)
and need to adopt a similar approach with the common API formats, too.

If your API design approach REQUIRES support for strong-typing
within the message passed between client and server, it will not be
easy and will probably be costly to support more than one output
format. You should probably abandon the notion of multiple for‐
mat support and stick with a proprietary object serialization pat‐
tern using application/json or application/xml. You can also
skip the the rest of this chapter.

Finally, we’ll need a mechanism for selecting the proper format for each incoming
request. This, too, should be an algorithm we can implement consistently in our ser‐
vice. Preferably this will rely on existing information in HTTP requests and will not
introduce some new custom meta-data that clients will need to support.

Ok, separate format processing, implement a consistent way to convert domain data
into an output format, and identify request metadata to help us select the proper for‐
mat. Let’s start with separating the format processing from the domain.

Separating Format from Functionality
All too often I see service implementations that are bound too tightly to a single out‐
put format. This is a common problem for SOAP implementations. Usually because
the developer tooling leads programmers into relying on a tight binding between the
internal object model and the external output format. It is important to treat all for‐
mats (including SOAP XML output) as independent of the internal object model.
This allows some changes in the internal model to happen without requiring changes
to the external output format.

To manage this separation, we’ll need to employ some modularity to keep the work of
converting the domain model into a message external from the work of manipulating
the domain model itself. This is using modularity to split up the assignment of work.
Typically modularity is used to collect related functionality in a single place (e.g. all
the functionality related to users or customers or shoppingCarts). The notion of
using modularity as primarily a work assignment tactic comes from Davis Parnas’
1972 paper On the Criteria to be Used in Decomposing Systems into Modules. As Par‐
nas states it…

“‘[M]odule’ is considered to be a responsibility assignment rather than a subprogram.
The modularizations include the design decisions which must be made before the
work on independent modules can begin.” [Emphasis in the original]

—David Parnas

74 | Chapter 3: The Representor Pattern

www.it-ebooks.info

http://www.it-ebooks.info/

Viewing the work of converting internal domain data into external output formats a
responsibility assignment leads us to isolate the conversion process into its own mod‐
ule. Now we can manage that module seprately from the one(s) that manipulate
domain data. A simple example of this clear separation might look like this:

var convert = new ConversionModule();
var output = convert.toHAL(domainData);

In the above imaginary pseudo-code, the conversion process is accessed via an
instance of the conversionModule() that contains one or more public methods (e.g.
toHAL()) that accept a domainData instance and produces the desired output. This is
all quite vague right now, but at least we have a clear target for implementing safe,
cheap, easy support for multiple output formats.

Once the functionality of the internal domain model is cleanly separated from the
external format, we need some guidance on how to consistently convert the domain
model into the desired output format. But before that, we’ll need a pattern for match‐
ing selecting which format is appropriate.

The Selection Algorithm
An important implementation detail when supporting multiple output formats for an
API is that of the output selection process. There needs to be some consistent algo‐
rithmic way to select the correct output format at runtime. The good news is that
HTTP — still the most common application-level protocol for Web APIs — has this
algorithm already defined: Content-Negotiation.

Section 3.4 of the HTTPbis specification (RFC7231) describes two patterns of content
negotiation for “representing information”:

Proactive
The server selects the representation based on the client’s preferences.

Reactive
The server provides a list of possible representations to the client and the client
selects the preferred format.

The most common pattern in use on the Web today is the Proactive one and that’s
what we’ll implement in our Representor. Sepcifically, clients will send an Accept
HTTP header that contains a list of one or more format preferences and the server
will use that list to determine which format will be used in the response (including
the selected format identifier in the server’s Content-Type HTTP header).

A typical client request might be:

GET /users HTTP/1.1
Accept: application/vnd.hal+json, application/vnd.uber+json
...

The Representor Pattern | 75

www.it-ebooks.info

http://www.it-ebooks.info/

And, for a service that supports HAL but does not support UBER, the response
would be:

HTTP/1.1 200 OK
Content-Type: application/vnd.hal+json
...

It’s All About Quality

The content negotiation examples shown in this book are greatly
simplified. Client apps may include several media types in their
accept list — even the "/" entry (which means “I accept every‐
thing!”). Also, the HTTP specification for the Accept header
includes what is known as the q parameter that can qualify each
entry in the accept list. Valid values for this paramter is a range of
numbers from 0.001 (least-preferred entry) to 1 (most-preferred
entry).
For example, this client request shows that, of the two acceptable
formats, the HAL format is the most-preferred by this client app:

GET /users/ HTTP/1.1
application/vnd.uber+json;q=0.3, application/vnd.hal+json;q=1

So, that’s what it looks like on the “outside" — the actual HTTP conversation. But
what pattern is used internally to make this work on the server side? Thankfully, a
solution for this kind of selection process was worked out in the 1990s.

A Solid STRATEGY
Many of the challenges of writing solid internal code can be summed up in a com‐
mon pattern. And one of the most important books on code patterns is the 1994
“Design Patterns” book by Gamma, Helm, Johnson, and Vlissides. Those are rather
tough names to remember and, over time, this group of authors has come to referred
to as “The Gang of Four” or GoF. You’ll sometimes even here people refer to the
“Gang of Four book” when they are thinking of this impotant text.

Patterns in Architecture

The notion that architecture can be expressed as a common set of
patterns was first written about by Christopher Alexander. His
book Timeless Way of Building (1979) is an easy and thought-
provoking read on how patterns play a role in physical architec‐
ture. It was his work on patterns that inspired the authors of the
“Design Patterns” book and so many other software patterns books.

There are about twenty patterns in the GoF book, categorized into three types:

76 | Chapter 3: The Representor Pattern

www.it-ebooks.info

http://www.it-ebooks.info/

• Creational Patterns
• Structural Patterns
• Behavioral Patterns

The pattern that will help us in our quest to implement support for multiple output
formats for our API that is safe, cheap and easy is the STRATEGY behavioral pattern.

Figure 3-1. The STRATEGY Pattern

The intent of the STRATEGY pattern is to:
“Define a family of algorithms, encapsulate each one, and make them interchangeable.”

—STRATEGY Pattern, OODesign.com

The STRATEGY pattern itself is made up of three distinct elements (called partici‐
pants):

1. Strategy: Defines the interface common to all supported algorithms
2. Context: Uses the interface to call the appropriate ConcreteStrategy
3. ConcreteStrategy: Implements each concrete algorithm

For our use case, we’ll implement the Strategy as a common way to describe internal
domain objects, pass that to Context (along with the HTTP Accept header) and
implement each format processor as a ConcreteStrategy.

That means we need to spend a few minutes on what the ConcreteStrategy might do
and how it will process internal data.

The Representor Pattern | 77

www.it-ebooks.info

http://www.it-ebooks.info/

The TRANSFORM VIEW
A very succint version of the ConcreteStrategy idea as it can apply to HTTP respon‐
ses appears in Martin Fowler’s Patterns of Enterprise Application Architecture. Pub‐
lished in 2002, the book contains over 40 patterns that Fowler says “…are ones that
I’ve seen in the field, usually on many different programming platforms.” It’s a valua‐
ble book that also has a great online website. One of the patterns in the is especially
appropriate for our Representor discussion here. It the pattern Fowler calls the
TRANSFORM VIEW. He describes the pattern this way:

“A view that processes domain data element by element and transforms it into HTML.”
—Martin Fowler, Patterns of Enterprise
Application Architecture

TRANSFORM VIEW or TEMPLATE VIEW?

Fowler’s detailed description of the TRANSFORM VIEW pattern
includes several comparisions between his TRANSFORM VIEW
and TEMPLATE VIEW (a pattern closely tied to the Model-View-
Controller MVC set of patterns). I won’t cover the material here
and it is well worth reading. Bascially, TEMPLATE VIEW works
best when you are working from the format perspective and
TRANSFORM VIEW works well when you’re working from the
domain data point of view.

While Fowler’s pattern is specifically targeted for transforming domain data into the
HTML format, it applies just as well to use cases requiring transformation into any
standardized media type format like the ones used for Web APIs.

Figure 3-2. The TRANSFORM VIEW Pattern

So, when tackling the challenge of supporting multiple output formats for an API, the
first step is to clearly separate the APIs functionality from the output format. Next, we

78 | Chapter 3: The Representor Pattern

www.it-ebooks.info

http://www.it-ebooks.info/

need to apply the Gang-of-Four’s STRATEGY pattnen to select formats and Fowler’s
TRANSFORM VIEW pattern to implement each conversion from donmain data to
media type message.

So, armed with this background information, we can now look at a set of concrete
implementation details to make it all happen.

A Server-Side Model
In this section, I’ll walk through the high-level details of a working Representor
implementation; the one that is used in all the services created for this book. Imple‐
menting a Representor means dealing with the following challenges:

1. Inspecting the HTTP request to identify the acceptable output formats for the
current request

2. Using that data to determine which output format will be used
3. Converting the domain data into the target output format

The source code for this version of the ‘TPS - Task Processing Sys‐
tem’ can be found in the associated github repo here: https://
github.com/LCHBook/simple-todo. A running version of the app
described in this chapter can be found here: http://lchbook-
ch02.herokuapp.com/ (TK: check URLs)

Handling the HTTP Accept Header
The first two items on that list are rather trivial to implement in any WWWW-aware
codebase. For example, identifying acceptable output formats for a request means
reading the Accept HTTP header. Here is a snippet of NodeJS code that does that:

// rudimentary accept-header handling
var csType = '';
var htmlType = 'text/html';
var csAccept = req.headers['accept'];
if(!csAccept|| csAccept==='*/*') {
 csType = htmlType;
}
else {
 csType = csAccept.split(',')[0];
}

Note the above code example makes two key assumptions:

1. If no Accept header is passed or the Accept header is set of “anything”, the
Accept header will be set to text/html, and

A Server-Side Model | 79

www.it-ebooks.info

https://github.com/LCHBook/simple-todo
https://github.com/LCHBook/simple-todo
http://lchbook-ch02.herokuapp.com/
http://lchbook-ch02.herokuapp.com/
http://www.it-ebooks.info/

2. If the Accept header lists more than one acceptable format, this service will just
grab the first one listed.

This implementation is very limited. It does not support the use of q values to thelp
the server better-understand client preferences and this service defaults to the text/
html type for API responses. Both of these assumptions can be altered/improved
through additional coding but I’ve skipped over that for this book today.

Implementing the STRATEGY Pattern
Now that we have the requested format value — the output context for this request —
we can move on to the next step; implementing the STRATEGY pattern in NodeJS.
For this book, I’ve created a simple module that uses a switch … case element that
matches the request context string (the accepted format) with the appropriate Concre
teStrategy implementation.

The code looks like this:

// load representors
var html = require('./representors/html.js');
var haljson = require('./representors/haljson.js');
var collectionJson = require('./representors/cj.js');
var siren = require('./representors/siren.js');

function processData(domainData, mimeType) {
 var doc;

 // clueless? assume HTML
 if (!mimeType) {
 mimeType = "text/html";
 }

 // dispatch to requested representor
 switch (mimeType.toLowerCase()) {
 case "application/vnd.hal+json":
 doc = haljson(object);
 break;
 case "application/vnd.collection+json":
 doc = collectionJson(object);
 break;
 case "application/vnd.siren+json":
 doc = siren(object);
 break;
 case "text/html":

 default:
 doc = html(object);
 break;
 }

80 | Chapter 3: The Representor Pattern

www.it-ebooks.info

http://www.it-ebooks.info/

 return doc;
}

In the above code snippet, you can see that a set of representors are loaded at the top
(see callout #1). The code in these modules will be covered below (TK: see A Sample
Representor). Next (callout #2), if the mimeType value is not passed (or is invalid) it is
automatically set to text/html. This is a bit of defensive coding. And then (at callout
#3) the switch … case block that checks the incoming mimeType string with known
(and supported) mime type strings in order to select the appropriate format process‐
ing module. Finally, in case an unknown/unsupported format is passed in, the
default statement (callout #4) makes sure that the service runs the html() module to
produce valid output.

We now have the basics of the Representor outlined. The next step is to actually
implement each format-specific module (HTML, HAL, etc.). To solve this challenge,
we need to take a side-road on our journey. One that establishes a general representor
pattern.

General Representor Modules
In the STRATEGY pattern, each format module (html(), haljson(), etc.) is an
instance of a ConcreteStrategy participant. While implementing these modules as
domain-specific converters (e.g. user-to-html, user-to-hal, customer-to-html,
customer-to-hal, etc.) would meet the minimum needs of our implementation, that
approach will be tough to scale over time. Instead, what we need is a general-purpose
format module; one that will not have any domain-specific knowledge. For example,
the format modules used to handle user domain data will be the same format mod‐
ules used to handle customer and accounting or any other domain-specific domain
data.

To do that, we’ll need to create a common interface for passing domain data into for‐
mat modules. One that is independent of any single domain model.

The WeSTL Format
For this book, I’ve worked up common interface in the form of a standardized object
model. One that service developers can quickly ‘load’ with domain data and pass to
format modules. I also took the opportunity to reframe the challenge of defining
interfaces for Web APIs. Instead of focusing on defining resources, I chose to focus
on defining state transitions. For this reason, I’ve named this interface design the Web
Service Transition Language or WeSTL (pronounced wehs’-tul).

A Server-Side Model | 81

www.it-ebooks.info

http://www.it-ebooks.info/

Curious about WeSTL?

I won’t be able to go into too much depth on the design of the
WeSTL format in this chapter. I want to focus instead on how we
can use WeSTL to drive our general representation module imple‐
mentation. Also, as I worked on this book, I continued to modify
the WeSTL model to meet new challenges I encountered along the
way. Even after all that work, WeSTL is still an unstable design
prone to breaking changes. By the time you read this, WeSTL
might have changed quite a bit! If you’re curious about the thinking
behind the WeSTL, check out the added Appendix (TK:link) and
the related online content listed there.

When designing and implementing a Web APIs with WeSTL, the service developer
collects up all the possible state transitions and describes them in the WeSTL model.
By state transitions, I mean all the links and forms that could appear within any ser‐
vice response. For example, every response might have a link to the home page. Some
responses will have forms allowing API clients to create new service data or edit exist‐
ing data. There may even be a services responses that lists all the possible links and
forms (state transtions) for the service.

Why State Transitions?

Focusing on state transitions may seem a bit unusual. First, the
transition is the thing between states; it leads from one state to
another. For example State A might be the ‘home’ page and State B
might be the list of users. WeSTL documents don’t describe State A
or B. Instead, they describe the action that makes it possible to
move from State A to State B. But this is also not quite correct.
WeSTL documents do not indicate the starting state (A) or the end‐
ing state (B), just one possible way to move from some state to
another. This focus on the actions that enable changes of state
makes WeSTL (as far as I know) unique.

A simple example of how WeSTL can be used to describe transitions is shown below.

{
 "wstl" : {
 "transitions" : [
 {

 "name" : "home",
 "type" : "safe",
 "action" : "read",
 "prompt" : "Home Page",
 },
 {

 "name" : "user-list",

82 | Chapter 3: The Representor Pattern

www.it-ebooks.info

http://www.it-ebooks.info/

 "type" : "safe",
 "target" : "user list"
 "prompt" : "List of Users"
 }
 {
 "name" : "change-password",
 "type" : "unsafe",
 "action" : "append"

 "inputs" : [
 {
 "name" : "userName",
 "prompt" : "User",
 "readOnly" : true
 },
 {
 "name" : "old-password",
 "prompt" : "Current Password",
 "required" : true,
 },
 {
 "name" : "old-password",
 "prompt" : "New Password (5-10 chars)",
 "required" : true,
 "pattern" : "^[a-zA-Z0-9]{5,10}$"
 }
]
 }
]
 }
}

As you can see from the above WeSTL document, it contains three transition descrip‐
tions named home, user-list (callout #1), and change-password (#2). The first two
transitions are marked safe. That means they doesn’t write any data, only execute
reads (e.g. HTTP GET). The thrid one, however (change-password) is marked
unsafe since it writes data to the service (ala HTTP POST). You can also see several
input elements described for the change-password transition (callout #3). These
details will be used when creating an API resource for the User Manager service.

There are a number details left out in this simple example, but you can see how
WeSTL works; it describes the transitions that can be used within the service. What’s
important to note is that this document does not define Web resources or constrain
where (or even when) these transitions will appear. That work is handled by service
developers elsewhere in the code.

So, this is what a WeSTL model looks like at “design-time”; before the service is up
and running. Typically a service designer uses WeSTL in this mode. There is also
another mode for WeSTL documents — “runtime.” That mode is typically used when
implementing the service.

A Server-Side Model | 83

www.it-ebooks.info

http://www.it-ebooks.info/

Runtime WeSTL
At runtime, an instance of the WeSTL model is created; one that contains only the
valid transitions for a particular resource. This runtime instance also includes any
data assocaited with that Web resource. In other words, WeSTL models at runtime
reflect the current state of a resource — both the avaialble data and the appropriate
transitions.

Creating a runtime WeSTL model in code might like this:

var transitions = require('./wstl-designtime.js');
var domainData = require('./domain.js');

function userResource(root) {
 var doc, coll, data;

 data = [];
 coll = [];

 // pull data for this resource
 data = domain.getData('user',root.getID());

 // add transitions for this resource
 tran = transitions("home");
 tran.href = root +"/home/";
 tran.rel = ["http:"+root+"/rels/home"];
 coll.splice(coll.length, 0, tran);

 tran = transitions("user-list");
 tran.href = root +"/user/";
 tran.rel = ["http:"+root+"/rels/collection"];
 coll.splice(coll.length, 0, tran);

 tran = transitions("change-password");
 tran.href = root +"/user/changepw/{id}";
 tran.rel = ["http:"+root+"/rels/changepw"];
 coll.splice(coll.length, 0, tran);

 // compose wstl model
 doc = {};
 doc.wstl = {};
 doc.wstl.title = "User Management";
 doc.wstl.transitions = coll;
 doc.wstl.data = data;

 return doc;
}

As the code sample above shows, the userResource() function first pulls any associ‐
ated data for the current resource — in this case, a single user record based on the ID
value in the URL — as seen in callout #1, then pulls three transitions from the design-

84 | Chapter 3: The Representor Pattern

www.it-ebooks.info

http://www.it-ebooks.info/

time WeSTL model (#2) and finally composes a runtime WeSTL model by combining
the data, transitions, and a helpful title string (callout #3).

It should be pointed out that the only contraint the wstl.data element in this model
is that it MUST be an array. IOt can be an array of JSON properties (e.g. name-value
paris), an array of JSON objects, or even an array of one JSON object that is, itself, a
highly nested graph. the WeSTL document MAY even include a property that points
to a schema describing the data element. This might in the form of a JSON Schema
document, RelaxNG, or some other schema description language.This schema infor‐
mation can be used by the general format module to help location and process the
contents of the data element.

As of this writing, WeSTL is still an unstable draft and there is no
definitive standard for describing complex data elements. You can
view the most recent features of WeSTL in the associated github
repo (TK:link).

This is how WeSTL allows service developers to define Web resources in a general
way. First, service designers can create design-time WeSTL documents that describe
all the possible transitions for the service. Second, sevice developers can use this
design-time document as source material for constructing runtime WeSTL docu‐
ments that include selected transitions plus associated runtime data.

Now we can finally write our general format modules.

A Sample Representor
Now that resources are represented using a generic interface using WeSTL, we can
build a general format module that converts the standardized WeSTL model into an
output format. Basically, the code accepts a runtime WeSTL document and then (as
Fowler put it for his TRANSFORM VIEW) processes domain data element by ele‐
ment and transforms it into the target output format.

The example Representor shown here has been kept to the bare
minium to help illustrate the process. It is not production-ready
and should not be used without improvements that would make it
more resilient at runtime. A fully-functional HAL Representor is
included in the github repo associated with the chapter (TK: link).

To see how this might look, here is a high-level look at a simplified implementation of
a general HAL representor.

function haljson(wstl, root, rels) {
 var hal;

A Server-Side Model | 85

www.it-ebooks.info

http://www.it-ebooks.info/

 hal = {};
 hal._links = {};

 for(var o in wstl) {
 hal._links = getLinks(wstl[o], root, o, rels);
 if(wstl[o].data && wstl[o].data.length===1) {
 hal = getProperties(hal, wstl[o]);
 }
 }

 return JSON.stringify(hal, null, 2);
}

// emit _links object
function getLinks(wstl, root, o, relRoot) {
 var coll, items, links, i, x;

 links = {};

 // list-level actions
 if(wstl.actions) {
 coll = wstl.transitions;
 for(i=0,x=coll.length;i<x;i++) {
 links = getLink(links, coll[i], relRoot);
 }

 // list-level objects
 if(wstl.data) {
 coll = wstl.data;
 items = [];
 for(i=0,x=coll.length;i<x;i++) {
 item = {};
 item.href = coll[i].meta.href;
 item.title = coll[i].title;
 items.push(item);
 }
 links[checkRel(o, relRoot)] = items;
 }
 }
 return links;
}

// emit root properties
function getProperties(hal, wstl) {
 var props;

 if(wstl.data && wstl.data[0]) {
 props = wstl.data[0];
 for(var p in props) {
 if(p!=='meta') {
 hal[p] = props[p];
 }

86 | Chapter 3: The Representor Pattern

www.it-ebooks.info

http://www.it-ebooks.info/

 }
 }
 return hal;
}

/* additional support functions appear here */

While this code example is just a high-level view, you should be able to figure out the
important implementation details. First, the first argument of the top level function
(haljson()) accepts a WeSTL model along with some runtime request-level data (cal‐
lout #1). That function “walks” the WeSTL runtime instance and first, processes any
links (transitions) in the model (callout #2) and then deals with any name-value pairs
in the WesTL instance (callout #3). Once all the processing is done, the resulting
JSON object (now a valid HAL document) is returned to the caller (#4).

An example of what ths code above would produce might be as follows…

{

 "_links" : {
 "self" : {
 "href": "http://localhost:8282/user/mamund"
 },
 "http://localhost:8282/rels/home": {
 "href": "http://localhost:8282/",
 "title": "Home",
 "templated": false
 },
 "http://localhost:8282/rels/collection": {
 "href": "http://localhost:8282/user/",
 "title": "All Users",
 "templated": false
 },
 "http://localhost:8282/rels/changepw": {
 "href": "http://localhost:8282/user/changepw/mamund",
 "title": "Change Password"
 }
 },

 "userName": "mamund",
 "familyName": "Amundsen",
 "givenName": "Mike",
 "password": "p@ss",
 "webUrl": "http://amundsen.com/blog/",
 "dateCreated": "2015-01-06T01:38:55.147Z",
 "dateUpdated": "2015-01-25T02:28:12.402Z"
}

Now you can see how the WeSTL document has led from design-time mode to run‐
time instance and finally (via the HAL representor module) to the actual HAL docu‐
ment. The WeSTL transitions now appear in the HAL _links section (callout #1) and
the related data for this user appears as name-value pairs called properties in HAL
documents (starting at callout #2)

A Server-Side Model | 87

www.it-ebooks.info

http://www.it-ebooks.info/

Again, the above example is missing features in order to make this brief review more
readable. And HAL is just one possible format implementation. Throughout the code
for this book you’ll find general formatters for a handful of formats. Hopefully, this
short overview will give enough guidance to anyone who wishes to implement their
own (possibly better) general representors for HAL and many other registered for‐
mats.

Summary
This chapter has been a bit of a diversion. I focused on the server-side Representor
even though the primary aim of this book is to explor client-side hypermedia. But this
Representor pattern is an important implementation approach and it will appear
many times throughout the code examples in the book. And the process of working
through programming lessons laerned in the past has been, I hope, helpful. We’ve
built up a working example of a Representor by taking lessons from Parnas’ “respon‐
sibility assignment” approach to modularity, the Content Negotiation features of
HTTP, the STRATEGY pattern from the “Gang of Four”, and Fowler’s TRANSFORM
VIEW pattern.

Not too shabby for a diverson.

Bob and Carol
“Hi, Carol. Ready to go over my results on the
multi-format support?”

“Sure, Bob. I’ve been anxious to hear what you
found out.”

“Well, it was really interesting. After doing some
brainstorming with the group -- including some of
that ‘reframing’ technique you told me about -- we

found a handful of previous work that applies to our chal‐
lenge.”

“Really? Let me guess. You found some old comp-
sci papers from the 1980s with the solution already

worked up, right?”

“Not quite. But close. First, we discussed the pros
and cons of multi-format support for APIs. They
all boiled down to some key points. If we want to

88 | Chapter 3: The Representor Pattern

www.it-ebooks.info

http://www.it-ebooks.info/

do this, we need to make adding format support safe, cheap,
and easy.”

“Right. You won’t get this kind of thing right the
first time and you’ll need to be able to add new
formats in the future without incurring lots of

recode/redeploy costs.”

“Exactly. The good news is this kind of challenge
has been faced lots of times before. We found some
great background material to help us work up a

solution.”

“Now here comes the old comp-sci stuff!”

“Yep. First, David Parnas’ descibed responsibility
assignment as a modularity approach from a paper
in 1972 so we pulled all the format stuff into a sep‐

arate module. Next, we found two OO patterns -- the GoF
STRATEGY pattern and Fowler’s TRANSFORM VIEW pat‐
tern -- described a general solution to our challenge rather
well. Finally, we can use HTTP’s Content Negotiation fea‐
ture as a way to select the proper output format at runtime.”

“Wow, so it really was already built for you!”

“Not quite. We had the theory, the next step was
building the module -- the Representor. For that
we needed to establish a common interface (from

the STRATEGY pattern) and that meant inventing what
we’re calling the Web Service Transition Language or
WeSTL. It’s a model for describing transitions and even
passing resource data from the internal service domain to
the format-specific modules.”

“Huh. We can talk about this transition model
later. But, now you have a full GoF STRATEGY
pattern implementation including the Context,

iStrategy, and the ConcreteStrategy participants, right?
That’s cool.”

Summary | 89

www.it-ebooks.info

http://www.it-ebooks.info/

“Yep, the whole team contributed and we’re all
happy with how it’s going so far. Though this was a
bit of a diversion, I’m really glad we took a couple

days to look into this challenge and were able to come up
with a loosely-coupled solution.”

“Well, that’s great Bob. Just one more question:
What format did you finally select for the service?”

“Ha! That’s the fun part. We don’t have to pick just
one. Now that we have this pattern implemented,
we’ll be looking for suggestions and feeback as we

expand the list of supported formats past the default
HTML.”

“Excellent. Then my first request will be to get the
API to support plain JSON objects, Bob.”

“No problem. I think the team is already working
on that one now.”

“OK, then. I guess I need to get my team working
on the JSON client right away.”

References
1. Standard Generalized Markup Language (SGML) is documented in ISO

8879:1986. It is, howwever, based on IBM’s GML format from the 1960s.
2. The “Simple Object Access Protocol (SOAP) 1.1” specification was published as a

W3C Note in May 2000. In the W3C publication model, Notes have no standing
as a recommendation of the W3C. It wasn’t until the W3C published the SOAP
1.2 Recommendation in 2003 that SOAP, technically, was a ‘standard.’

3. Crockford’s 50 minute talk “The JSON Saga” was described as “The True Story of
JSON.” An unoffical transcript of this talk is available at [TK:link]

4. CSV was first specified by the IETF in RFC4180 “Common Format and MIME
Type for Comma-Separated Values (CVS) Files” in 2005. This was later updated

90 | Chapter 3: The Representor Pattern

www.it-ebooks.info

http://www.iso.org/iso/catalogue_detail.htm?csnumber=16387
http://www.iso.org/iso/catalogue_detail.htm?csnumber=16387
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
https://www.youtube.com/watch?v=-C-JoyNuQJs
https://tools.ietf.org/html/rfc4180
http://www.it-ebooks.info/

by RFC7111 (to add support for URI fragments) and additional CSV-related
efforts have focused on supporting additional semantics.

5. The [“Atom Syndication Format” (https://tools.ietf.org/html/rfc5023 and the
“Atom Publishing Protocol (RFC5023) form a unqiue pair of specifications that
outline both the document format and read/write semantics in different RFCs.
There are also a handful of RFCs defining Atom format extensions.

6. More on the Open Data Protocol (OData) can be found at the OData web site.
7. Mike Kelly’s “Hypertext Application Language (HAL) has proven to be one of the

more popular of the hypermedia-style formats (as of this writing).
8. RFC6570 specifies URI Templates.
9. The “Collection+JSON” format was registered with the IANA in 2011 and is “a

JSON-based read/write hypermedia-type designed to support management and
querying of simple collections.”

10. Both Siren and Zetta are projects spearheaded by Kevin Swiber.
11. As of this writing the Universal Basis for Exchanging Representations (UBER) is

in stable draft stage and has not been registered with any standards body.
12. Beck’s 1997 article “The Past and Future of Cognitive Therapy” describes his

early experiences that led to what is now known as cognitive reframing.
13. Parnas’ “On the Criteria to be Used in Decomposing Systems into Modules” is a

very short (and excellent) article written for the ACM in 1972.
14. Details on HTTP Content Negotiation are covered in Section 3.4 of RFC7231.

One of a series of HTTP-related RFC’s (7230 through 7240).
15. The full title of the “Gang of Four” book is “Design Patterns: Elements of Reusa‐

ble Object-Oriented Software” by Eric Gamma, Richard Helm, Ralph Johnson,
and John Vlissides.

16. The STRATEGY pattern from the GoF book is nicely summarized at the Object-
Oriented Design web site.

17. A good source for learning more about Christopher Alexander and his work can
be found at the Pattern Language web site.

18. Martin Fowler’s TRANSFORM VIEW is covered in his online catalog based on
the 2002 book, Patterns of Enterprise Application Architecture.

Images Credits

1. Diogo Lucas, Figures 1 & 2

References | 91

www.it-ebooks.info

https://tools.ietf.org/html/rfc7111
https://tools.ietf.org/html/rfc4287
https://tools.ietf.org/html/rfc5023
https://tools.ietf.org/html/rfc5023
http://www.odata.org/
http://stateless.co/hal_specification.html
https://tools.ietf.org/html/rfc6570
http://amundsen.com/media-types/collection/
https://github.com/kevinswiber/siren
https://github.com/zettajs/zetta/wiki
http://uberhypermedia.com
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3330473/pdf/jp64276.pdf
https://www.cs.umd.edu/class/spring2003/cmsc838p/Design/criteria.pdf
https://tools.ietf.org/html/rfc7231#section-3.4
http://www.pearsonhighered.com/educator/academic/product/0,,0201633612,00%2Ben-USS_01DBC.html
http://www.pearsonhighered.com/educator/academic/product/0,,0201633612,00%2Ben-USS_01DBC.html
http://www.oodesign.com/strategy-pattern.html
http://www.oodesign.com/strategy-pattern.html
https://www.patternlanguage.com/ca/ca.html
http://martinfowler.com/eaaCatalog/transformView.html
http://www.martinfowler.com/books/eaa.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4

Versioning and the Web

“Everything changes and nothing stands still.”
—Heraclitus

Bob and Carol
“Carol, I’ve been starting to worry that we’ve
missed something very important in our API
design.”

“Oh? What’s that Bob?”

“Versioning.”

“You mean handling changes in the API over time,
right?”

“Right. I think we need to account for that in our
design.”

“Hmmm. You know, now that I think about it,
we’ve updated the API a couple times and never

once talked about `versioning.’ Wonder why that
is.”

93

www.it-ebooks.info

http://www.it-ebooks.info/

“Well, Carol, I think we just forgot about it. We
were in too much of a hurry to publish a working
API and didn’t think about the long-term implica‐

tions.”

“Maybe. But, you know, I’ve not really missed ver‐
sioning at all. I mean, things seem to be working

fine, right?”

“Well, that’s true for now. We’re doing mostly small
changes right now and don’t have too many inde‐
pendent clients running against the API. But what

happens in a few months or even a year from now?”

“I suspect the same thing happens, Bob. We keep
making small changes and things keep working

just fine.”

“Well, I’m not so sure about that. I think we are
going to run into problems at some point unless
we address this now.”

“OK, I see your point. So, let’s take a look at it.
We’re using HTTP so far, right? HTTP has had a
couple version updates over the last twenty or so

years.”

“That’s true, Carol. And it all seemed to go pretty
well. Hmmm. I think HTML is another example,
right? Lots of versions there.”

“Right. That makes me wonder what it is about the
design of HTTP and HTML that made it possible

to change over time without breaking existing
implemenations.”

“Huh. You’ve got me thinking here, Carol. Let’s not
make any changes to our API design yet. I want to
do some more research on this topic and see what

comes up.”

94 | Chapter 4: Versioning and the Web

www.it-ebooks.info

http://www.it-ebooks.info/

“Sounds good to me, Bob. Spend a few days on this
and let’s get back together early next week.”

Whether you are in charge of designing, implementing, or just maintaining a Web
API, at some point you start to think about how to handle change over time. The
common word used in the API world is versioning. This idea of versioning is so
deeply ingrained in the idea of API design that it is considered part of the Common
Practice for APIs. Many API designers include versioning information (e.g. numbers
in the URL, HTTP headers, or within the response body) without too much thought
about the assumption behind that practice.

And there are lots of assumptions behind the common practices of “Versioning
APIs.” Chief among them is the assumption that any change that is made to the API
should be explictly noted in the API itself (usually in the URL). Another common
assumption is that all changes are breaking changes — that failing to explicity signal
changes means someone, somehwere will experience a fatal error. One more assump‐
tion worth mentioning here is that it is not possible to make meaningful changes to
the functionality of Web APIs unless you make a breaking change.

Finally, there is enough uncertainty associated with the lifecycle of Web APIs that
many API developers decide to simply hedge their bets by adding versioning infor‐
mation in the API design just in case it might be needed at some future point. This is
a kind of Pascal’s Wager for API design.

Pascal’s Wager

Blaise Pascal, noted 17th century philospher, mathematician, and
physicist is credited with creating Pascal’s Wager. A simplified ver‐
sion of this argument is that, when faced with a decision that can‐
not be made using logic alone, “a Game is being played… where
heads or tails will turn up.” In his case, he was illustrating, since we
do not know if there is a God, we should ‘bet’ that one exists since
that is the bet with a better outcome.
Although his argument was more nuanced — and others have
made similar observations about the nature of uncertainty — Pas‐
cal’s Wager has become a meme that essentially states “When in
doubt, hedge your bets.”

Ok, with this as a background, let’s look into the assumptions behind the Versioning
argument and some evidence of how some Web-related technology handles change
over time.

Versioning and the Web | 95

www.it-ebooks.info

http://www.it-ebooks.info/

Versioning for the Internet
The idea that handling change over time on the Web means employing the “explixit
versioning” technique flies in the face of some very important evidence about how
things have worked on the Internet (not just the Web) over the last couple decades.
We’ll take some time here to look at just a few examples.

The examples we’ll explore here are one of the foundational transport-level protocols
(TCP/IP), the most common application-level protocols (HTTP), and HTML — the
common markup language for the WWW. They have each undergone important
modification over years and all without causing any major “breakage” for exsiting
implementations.

Each of our examples are uniqiue but they all have a common design element that
can help us in our understanding of how to handle change over time on the Web.

TCP/IP’s Robustness Principle
The TCP/IP protocol is an essential part of how the Internet works today. In fact,
TCP/IP is actually two related protocols; the Transmission Control Protocol (TCP)
and the Internet Protocol (IP). Together they are sometimes referred to as the Inter‐
net Protocol Suite. Computer scientist, Alan Kay, as called TCP/IP “a kind of univer‐
sal DNA of [the Internet].” Kay also has pointed out that the Internet has “never been
stopped since it was first turned on in September, 1969.” That means that this set of
protocols has been working 24 hours a day, seven days a week for over forty years
without a “restart.” That’s pretty amazing.

Kay’s point is that the source code for TCP/IP has been changed and improved over all
these years without the need to shut down the Internet. There are a number of rea‐
sons for this and one of the key elements is that it was designed for this very situation
— to be able to change over time without shutting down. Kay has been quoted as say‐
ing that the two people credited with designing TCP (Bob Kahn) and IP (Vint Cerf)
“knew what they were doing.”

One bit of evidence of this ‘knowing what to do’ can be found in a short section of the
TCP specification; section 2.10 with the title The Robustness Principle. The full text of
this section is:

“TCP implementations will follow a general principle of robustness: be conservative in
what you do, be liberal in what you accept from others.”

—RFC793

The authors of this specification understood that it is important to design a system
where the odds are tilted in favor of completing message delivery successfully. To do
that, implementors are told to be careful to craft valid messages to send. Implemen‐
tors are also encouarged to do their best to accept incoming messages — even if they

96 | Chapter 4: Versioning and the Web

www.it-ebooks.info

http://www.it-ebooks.info/

are not quite ‘perfect’ in their format and delivery. When both things are happening
in a system, the odds of messages being accepted and processed improves. TCP/IP
works, in some part, because this principle is baked into the specification.

Postel’s Law

The Robustness Principle is often referred to as Postel’s Law
because Jon Postel was the editor for the RFC that described the
TCP protocol.

One way to implement Postel’s Law when building hypermedia-style client applica‐
tions is to pass service responses through a routine that converts the incoming mes‐
sage into an internal representation (usually an object graph). This conversion
process should be implemented in a way that allows successful processing even when
there are flaws in the response such as missing default values that the converter can
fill in or simple structural errors such as missing closing tags, etc. Also, when forming
outbound requests — especially requests that will send an HTTP body (e.g. POST,
PUT, and PATCH) — it is a good idea to run the composed body through a strict vali‐
dation routine that will fix up formatting errors in any outbound messages.

Below is a bit of pseudo-code that illustrates how you can implement Postel’s Law in a
client application.

// handling incoming messages
httpResponse = getResponse(url);
internalObjectModel = permissiveConverter(httpResponse.body);

...

// handling outgoing messages
httpRequest.body = strictValidator(internalObjectModel);
sendRequest(httpRequest);

So TCP teaches us to apply the Robustness Principle to our API implementations.
When we do that, we have an improved likelihood that messages sent between parties
will be accepted and processed.

HTTP’s MUST IGNORE
The HTTP protocol has been around a long time. It was runningin its earliest form in
1990 at CERN labs and has gone through several significant changes in the last 25
years. Some of the earliest editions of the HTTP specification made specific reference
to the need for what was then called “client tolerance” in order to make sure that cli‐
ent applications would continue to function even when the responses from Web
servers were not returning valid HTTP responses — these were called “deviant
servers” in a special note linked to the 1992 draft of the HTTP specs.

Versioning for the Internet | 97

www.it-ebooks.info

http://www.it-ebooks.info/

A key prinicple used in the early HTTP specifications is the MUST IGNORE direc‐
tive. In its simplist form, any element of a request that the receiver does not under‐
stand, must be ignored without halting any processing of that request. Message
processing should continue as if that portion of the message does not exist.

The final HTTP 1.0 documentation (RFC1945) has several places where this principle
is documented. For example, in the section on HTTP Headers, it reads…

“Unrecognized header fields should be ignored by the recipient and forwarded by
proxies.”

—RFC1945

Note that in the above quote, the MUST IGNORE princple is extended to also
include instructions for proxies to forward the unrecognized headers on to the next
party. Not only should the receiver not reject messages with unknown headers but, in
the case of proxy servers, those unknown headers are to be included in any forwarded
messages. The HTTP 1.0 specification (RFC1945) contains eight separate examples of
the MUST IGNORE principle. The HTTP 1.1 specifcation (RFC2616) has more than
30 examples.

MUST IGNORE or MAY IGNORE?

Throughout this section of the chapter I use the phrase MUST
IGNORE when referring to the principle in the HTTP specification
documents. This name is also used by David Orchard in his blog
article Versioning XML Vocabularies. While the HTTP specs use the
word ‘ignore’ many times, not all uses are prefaced by ‘must.’ In
fact, some references to the ingore directive are qualified by the
words MAY or SHOULD. The name MUST IGNORE, however is
commonly used for the general principle of ignoring what you
don’t understand without halting processing.

Suporting the MUST IGNORE principle for Web clients means that incoming mes‐
sages are not rejected when they contain elements that are not understood by the cli‐
ent application. This means the message-processing for Web clients needs to be
tolerant of unrecognized elements in a response. The easiest way to achieve that is to
code the clients to simply look for and process the elements in the message that they
“know”.

For example, a client may be coded to know that every incoming message contains
three root elements: links, data, and actions. In a JSON-based media type, the
response body of a this kind of request might look like this:

{
 "links" : [...],
 "data" : [...],

98 | Chapter 4: Versioning and the Web

www.it-ebooks.info

http://www.it-ebooks.info/

 "actions" : [...]
}

Some pseudo-code to process these messages might look like this:

WITH message DO
 PROCESS message.links
 PROCESS message.data
 PROCESS message.actions
END

However, that same client application might get a response body that contains an
additional root-level element named extensions:

{
 "links" : [...],
 "data" : [...],
 "actions" : [...],
 "extensions" : [...]
}

In a client that honors the MUST IGNORE principle, this will not be a problem
because the client will simply ignore the new element and continue to process the
message as if the extensions element does not appear at all. This is an example of
MUST IGNORE at work.

Structural vs. Semantic Change

It is important to point out that adding new elements to the mes‐
sage (like the example given here) is structural change. We need to
design formats and implement parsers so that any new change to
the structure is easily and safely ignored. However, if you want to
be able to add data or action elements to responses that will not be
ignored, you need to use another form of change — what I call
semantic change. Adding or removing data elements and/or chang‐
ing the links or forms that appear within a response is changing the
semantics of the message, not the structure. Semantic changes
SHOULD be automatically picked up by the client app and parsed/
rendered as usual.
When you want changes within a response to be IGNORED, make
a structural change. When you want changes to be automatically
included, make a semantic change instead.

So HTTP’s MUST IGNORE principle shows us that we need to be able safely to pro‐
cess a message even when it contains portions we do not understand. This is similar
to Postel’s Law from the TCP specifcation. Both rules are based on the assumption
that some percentage of incoming messages will contain elements that the receiver
has not been programmed to ‘understand.’ When that happens, the processing should

Versioning for the Internet | 99

www.it-ebooks.info

http://www.it-ebooks.info/

not simply stop. Instead processing should continue on as if the unrecognized ele‐
ment had never appeared at all.

HTML’s Backward Compatibility
HTML is another example of a design and implementation approach that accounts
for change over time. Like HTTP, the HTML media type has been around since the
early 1990s. And, like HTTP, HTML has undergone quite a few changes over that
time. And yet, throughout all those changes — from Tim Berner’s Lee’s intial “HTML
Tags” document in 1990, soon known as HTML 1.0 on up to the current HTML5 —
those many changes have been guided by the principle of Backward Compatibility.
Every attempt has been made to only make changes to the media type design that will
not cause HTML browsers to halt or crash when attempting to process an HTML
document.

The Earliest Known HTML Document

The earliest known HTML document is from November 1990 and
is still available on the Web today. It was crafted two weeks before
Tim Berners-Lee and his CERN colleague, Robert Cailliau attended
ECHT ’90 — the European HyperText Convention — in held in
Paris. The entire HTML document looks like this:

<title>Hypertext Links</title>
<h1>Links and Anchors</h1>
A link is the connection between one piece of
hypertext and another.

The fact that this page still renders in browsers today; 25 years later
is a great example of how both message design (HTML) and client
implementation principles (Web browsers) can combine to support
successful Web interactions over decades.

From almost the very beginning, HTML was designed with both Postel’s Law and
HTTP’s MUST IGNORE in mind. Berners-Lee makes this clear in one of the early
working documents for HTML:

“The HTML parser will ignore tags which it does not understand, and will ignore
attributes which it does not understand…”

—Berners-Lee 1992

What’s interesting here is that this type of guidance shows the message designers
(those defining HTML) are also providing specific guidance to client implementors
(those coding HTML parsers). This principle of advising implementors on how to use
and process incoming messages is an important feature of Internet standards in gen‐
eral. So important that an IETF document (RFC2119) establishing just how specifica‐
tions should pass this advice to implementors. This document defines a set of special

100 | Chapter 4: Versioning and the Web

www.it-ebooks.info

http://www.w3.org/History/19921103-hypertext/hypertext/WWW/Link.html
http://www.it-ebooks.info/

word for giving directive advice. They are “MUST”, “MUST NOT”, “REQUIRED”,
“SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”,
“MAY”, and “OPTIONAL.” Other standards bodies have adopted a similar approach
to passing on guidance to implementors.

So, after reviewing lessons from TCP, HTTP, and HTML, we can come up with some
general guidance for designing and maintaining APIs that need to support change
over time.

Guidelines for Non-Breaking Changes
Dealing with change-over-time is best dealt with in a set of principles — a kind of
change aesthetic. There is no one single action to take, design feature to include (or
exclude), etc. Another key thing to keep in mind is that change will always occur. You
can certainly use energy and effort to stave off change (e.g. “I know you want that
feature in the API but we are not going to be able to make that change this year.”).
You can even work around change with a ‘hack’ (e.g. “Well, we don’t support that, but
you can get the same effect if you first, write a temp record and then filter based on
the change-date of the temp file.”). There are other ways to avoid facing change, but
almost all long-lived and oft-used APIs will experience pressure to change and
designing-in the ability to handle select types of change can reduce the stress, cost,
and danger of changing APIs over time.

So, for those who are no longer attempting to stave of the inetivable changes to your
APIs, here is some general guidance for Web API designers, service-providers, and
comsumer-clients. I’ve used all these options in the past and found them helpful in
many cases.

API Designers
For those in change of designing APIs and message formats, it is important to under‐
stand enough about the general problem area to get a sense of what types of changes
are likely to be needed over time as well as design interfaces that lead implementors
down the ‘happy path’ of creating API services and clients that are able to handle the
common changes.

Taking into account the likely changes over time is tricky, but important. We saw this
kind of thinking when we reviewed the way HTML is documented and
designed(TK:internal ref). Paul Clements, one of the authors of the book Software
Architecture in Practice claims that those who work to in software architecture have a
responsibility to deal with change as a fundamental aspect of thier design:

“The best software architecture knows what changes often and makes that easy.”
—Paul Clements

Guidelines for Non-Breaking Changes | 101

www.it-ebooks.info

http://www.it-ebooks.info/

With this in mind here are three valuable princicples for those tasked with designing
Web APIs.

Promise Media Types, Not Objects
Over time, object models are bound to change — and these models are likely to
change often for new services. Trying to get all your service consumers to learn, and
track all your object model changes is not a good idea. And, even if you wanted all
API consumers to keep up with your team’s model changes, that means your feature
velocity will be limited to that of the slowest API consumer in your ecosystem. This
can be especially problematic when your API consumers are customers and not fel‐
low colleagues within the same company.

Instead of exposing object models in your APIs, promise standard message formats
(e.g. HTML, Atom, HAL, Cj, Siren, etc.). These formats don’t require consumers
understand of your service’s interal object models. That means you’re free to modify
your internal model w/o breaking your promise to API consumers. This means pro‐
viders will need to handle the task of translating internal domain data into external
message formats but we covered that already in (TK:ch02).

Well-designed formats SHOULD allow API designers to safely introduce semantic
changes (message content) and well-implemented API consumers will be able to
parse/render these content changes without the need for code updates. These same
formats MAY support structural changes to message in order to safely introduce
changes that can be ignored by clients that do not understand them.

Document Link Identifiers, Not URLs
Your API SHOULD NOT bake static URLs into the design. URLs are likely to change
over time. Especially in cases where your initial service is running in a test bed or
small online community to start. Tricking API consumers into backing explicit URLs
into their source code increases the likelihood that code will become obsolete and
forces consumers into making redeployments if and when your URLs are updated.

Instead, your API design SHOULD promise to support a named operation (shopping
CartCheckOut, computeTax, findCustomer) instead of promising exact addresses for
those operations (http://api.example.org/findCustomer). Documenting (and
promising operations by name is a much more stable and maintainable design fea‐
ture.

Remember, if you want new operations to be ingored by existing clients, make it part
of the structure of the message (e.g. <findCustomer … />). However, when you want
the operation to be automatically parsed and/or rendered, favor formats that allow
you to include the operation identifiers as part of the message’s semantic content (e.g.

102 | Chapter 4: Versioning and the Web

www.it-ebooks.info

http://api.example.org/findCustomer
http://www.it-ebooks.info/

<operation name="findCusomter" … />. Good candidates for semantic identifers
are properties such as id, name, class and rel.

Publish Vocabularies, Not Models
The notion of canoncial models has been around a long time — especially in large
enterprise IT shops. The hope is that, with enough hard work, a single grand model
of the company’s business domain will be completely defined and property described
so that everyone (from the business analyst on through to the front-line developer)
will have a complete picture of the entire company’s domain data. But this never
works out.

The two things conspiring against canonical models are 1) scope, and 2) time. As the
scope of the problem grows (e.g. the company expands, product offering increase,
etc.) the model becomes unwieldy. And, as time goes on, even simple models experi‐
ence modifications that complicate a single-model view of the world. The good news
is there is another way to solve this problem: vocabularies.

Once you move to promising formats instead of object models, the work of providing
shared understanding or your API domain’s data and actions needs to be kept some‐
where else. The great place for this is in a vocabulary. Eric Evans refers to this using
the name UBIQUITOUS LANGUAGE — a common rigorous language shared
between domain experts and system implementors. By focusing on a shared vocabu‐
lary designers can constant probe domain experts for clarification and developers can
implement features and share datra with a high degree of confidence.

Another important reason to rely in vocabularies is that you can define consistent
‘binding’ rules between the vocabulary terms and the output formats used in your
API. For example, you might document that data element names in the vocabulary
will ALWAYS appear in the class property of HTML responses and the name prop‐
erty of Collection+_JSON responses, and so forth. This also helps API providers and
consumers write general-use code that will work even when new vocabulary terms
are added over time.

So, when designing APIs you should:

• Promise Media Types, Not Objects
• Document Link Identifers, Not URLs
• Publish Vocabularies, Not Models

Server Implementors
Like API designers, service implementors have a responsibility to create a software
implementation that can account for change-over-time in an effective way. This

Guidelines for Non-Breaking Changes | 103

www.it-ebooks.info

http://www.it-ebooks.info/

means not only making sure local service changes can be made without any unneces‐
sary complexity or instablity. It also means that changes made to the service over time
are not likely to break existing client implementations — even implementations that
the service knows nothing about.

Maintaining backward compatibility is the primary prinicple for service implemen‐
tors when supporting change-over-time. Essentially, this constrains the types of
changes a service can make over time. Only those changes which will not invalidate
existing implementations. We saw this principle in play, for example, when reviewing
HTTP’s design principles (TK:internal ref).

With this in mind, here are three principles I’ve used to help support change-over-
time while reducing the likelihood of breaking existing implementations.

Don’t Take Things Away
One of the most important aspects of maintaining a backward-compatible service
implementation is DON’T TAKE THINGS AWAY. In API projects I work on, I make
this an explicit promise. Once API consumers know that you will not take things
away, the value of your API will go up. That’s because API consumers will be assured
that, even when you add new data elements and actions to the API, the existing API
consume code will still be valid.

One big reason to make this promise is that it allows API consumer teams to move at
their own pace. They don’t need to stop current sprints or feature work in order to
deal with potentially breaking changes from some ‘up-stream’ service they are using
in their application. That also means the services don’t need to wait for the slowest
API consumer team before they introduce new elements and actions in the API. This
loose-coupling in the API update process can result in overall faster development
processes since it reduces potential ‘blocking’ scenarios.

104 | Chapter 4: Versioning and the Web

www.it-ebooks.info

http://www.it-ebooks.info/

We’ll Find Another Provider, Thanks

If you create an API provider implementation that REQUIRES all
consumer apps to upgrade at the same pace as the service does, you
are essentially attempting to control the way API consumer teams
operate. You are forcing them to work at your pace, on features you
deem important. While this may be acceptable for internal teams, it
can spell real trouble if your API consumers are third parties or
customers. APIs that mess with customer release schedules, cause
unwanted upgrade costs, and introduce features the consumer
doesn’t need right away will be seen as extra costs and burdens. I’ve
heard of external API consumer teams making the decision to stop
using APIs with tightly-coupled upgrade schedules and looking for
APIs that allow the customer to update on their own scheule.
The more external API consumers you support, the more impor‐
tant it is to promis that you WILL NOT TAKE THINGS AWAY.

So, what does this backward-compatibility promise look like? Here’s an example I
learned from a Jason Rudolph at Github. This is example of what they call “evolution‐
ary design” for APIs. He says:

“When people are building on top of our API, we’re really asking them to trust us with
the time they’re investing in building their applications. And to earn that trust, we can’t
make changes [to the API] that would cause their code to break.”

—Jason Rudolph, Github

Here’s an example of their “evolutionary design” in action. They supported an API
response that returned the current status of an account’s request rate limit. It looked
liked this:

*** REQUEST ***
GET rate_limit
Accept: application/vnd.github+json
...

*** RESPONSE ***
200 OK HTTP/1.1
Content-Type: application/vnd.github+json
...

{
 "rate" {
 "limit" : 5000,
 "remaining : 4992,
 "reset" : 1379363338
 }
}

Guidelines for Non-Breaking Changes | 105

www.it-ebooks.info

http://www.it-ebooks.info/

Over time, the github team learned that this response was more coarse-grained than
was needed. It turns out they wanted to separate search-related rate limits from typi‐
cal core API calls. So the new design would look like this:

*** REQUEST ***
GET rate_limit
Accept: application/vnd.github+json
...

*** RESPONSE ***
200 OK HTTP/1.1
Content-Type: application/vnd.github+json
...

{
 "resources" : {
 "core" : {
 "limit" : 5000,
 "remaining : 4992,
 "reset" : 1379363338
 },
 "search" : {
 "limit" : 20,
 "remaining : 19,
 "reset" : 1379361617
 }
 }
}

So, they had a dilemma on their hands. How could they make this important change
to the interface without breaking existing implementations? Their solution was, I
think, quite smart. Rather than changing the response body, they extended it. The new
response for the rate_limit request now looks like this:

*** REQUEST ***
GET rate_limit
Accept: application/vnd.github+json
...

*** RESPONSE ***
200 OK HTTP/1.1
Content-Type: application/vnd.github+json
...

{
 "rate" : {
 "limit" : 5000,
 "remaining : 4992,
 "reset" : 1379363338
 },
 "resources" : {
 "core" : {

106 | Chapter 4: Versioning and the Web

www.it-ebooks.info

http://www.it-ebooks.info/

 "limit" : 5000,
 "remaining : 4992,
 "reset" : 1379363338
 },
 "search" : {
 "limit" : 20,
 "remaining : 19,
 "reset" : 1379361617
 }
 }
}

Notice that Github applied a structural change to the response (TK above). This is the
change that can be safely ignored by clients that don’t understand it. This is just one
example of implementing backward-compatibility by not taking things away. The
same genreal appraoch can be made for links and forms in a response, too.

Don’t Change The Meaning of Things
Another important backward-compatiblity principle for service providers is DON’T
CHANGE THE MEANING OF THINGS. That means, once you publish a link or
form with an identifier that tells API consuemers what is returned (e.g. <a href="…"
rel="users" /> returns a list of users), you SHOULD NOT later use that same iden‐
tifer to return something completely different (a href="…" rel="users" /> later
only returns a list of inactive users. Consistency in the meaning of a link identifer
and/or data element is very important for maintaining backward-compatibility over
time.

In cases where you want to add some new functionality to the API, it is much better
to make a semantic change by adding the new functionality. And you should do this
without removing the existing functionality. To use the above example, if you want to
add the ability to return a list of inactive users, it is better to introduce an additional
link (and identifier) while maintaining the existing one.

*** REQUEST ***
GET /user-actions HTTP/1.1
Accept: application/vnd.hal+json
...

**** RESPONSE ***
200 OK HTTP/1.1
Content-Type: application/vnd.hal+json
...

{
 "_links" : {
 "users" : {"href" : "/user-list"},
 "inactive" : {"href" : "/user-list?status=inactive"}
 }

Guidelines for Non-Breaking Changes | 107

www.it-ebooks.info

http://www.it-ebooks.info/

}
...

In cases where the above response is used to create a human-driven UI, both the links
will appear on the screen and the person running the app can decide which link to
select. In the case of a service-only interface (e.g. some middleware that is tasked with
collecting a list of users and processing it in some unique way), the added semantic
information (e.g. the inactive link) will not be “interesting” and will be ignored. In
both cases, this maintains backward-compatiblity and does not breaking exsiting
implementations.

All New Things are Optional
Another important change-over-time principle for service implementors is to make
sure ALL NEW THINGS ARE OPTIONAL. This means any new arguments (e.g. fil‐
ters or update values) cannot be treated as requried elements. Also, any new function‐
ality or workflow steps (e.g. you introduce a new workflow step between login and
checkout) cannot be required in order to complete the process. Essentially, this boils
down to making sure any new processing steps are optional.

One example of this is similar to the github case above (TK:ref). It is possible that,
over time, you’ll find that some new filters are needed when making requests for large
lists of data. You might even want to introduce a default page-size to limit the load
time of a resource and speed up responsiveness in your API. Here’s how filter form
looks before the introduction of the page-size argument:

*** REQUEST ***
GET /search-form HTTP/1.1
Accept: application/vnd.collection+json
...

*** RESPONSE ***
200 OK HTTP/1.1
Content-Type: application/vnd.collection+json
...

{
 "collection" : {
 "queries" : [
 {
 "rel" : "search"
 "href" : "/search-results",
 "prompt" : Search Form",
 "data" : [
 {
 "name" : "filter",
 "value" : "",
 "prompt" : "Filter",
 "required" : true

108 | Chapter 4: Versioning and the Web

www.it-ebooks.info

http://www.it-ebooks.info/

 }
]
 }
]
 }
}

And here is the same response after introducing the page-size argument:

*** REQUEST ***
GET /search-form HTTP/1.1
Accept: application/vnd.collection+json
...

*** RESPONSE ***
200 OK HTTP/1.1
Content-Type: application/vnd.collection+json
...

{
 "collection" : {
 "queries" : [
 {
 "rel" : "search"
 "href" : "/search-results",
 "prompt" : Search Form",
 "data" : [
 {
 "name" : "filter",
 "value" : "",
 "prompt" : "Filter",
 "required" : true
 },
 {
 "name" : page-size",
 "value" : "all",
 "prompt" : "Page Size",
 "required" : false
 }
]
 }
]
 }
}

In the updated rendition, you can see the new argument (page-size) was explicitly
marked optional ("required" : false). You can also see the a default value was pro‐
vided ("value" : "all"). This may seem a bit conterintuitive. The update was intro‐
duced in order to limit the number of records sent in responses. So why set the
default value to "all"? It is set to "all" because that was the initial promise in the
first rendition of the API. We can’t change the meaning of this request now to only

Guidelines for Non-Breaking Changes | 109

www.it-ebooks.info

http://www.it-ebooks.info/

include some of the records. This follows the DON’T CHANGE THE MEANING OF
THINGS principle from above (TK:ref).

So, as service implementors, you can go a long way toward maintaing backward com‐
patibility by supporting these three principles:

• Don’t Take Things Away
• Don’t Change the Meaning of Things
• Make New Things Optional

Client Implementors
Those who on the consuming end of APIs also have some responsibility to support
change-over-time. We need to make sure we’re prepared for the backward-compatible
features employe by API designers and service implementors. But we don’t need to
wait for designers and providers to make changes in their own work before creating
stable API consumer apps. We can adopt some of our own principles for creating
robust, resilient API clients. Finally, also need to help API designers and service pro‐
viders understand the challenges of creating adaptable API consumers by encourag‐
ing them to adopt the kinds of principles described here when they create APIs.

Code Defensively
The first thing API consumers can do is adopt a coding strategy that protects the app
from cases where expected data elements and/or actions are missing in a response.
This is can be accomplished when you CODE DEFENSIVELY. You an think of this as
honoring Postel’s Law (TK:ref) by being “liberal in what you accept from others.”
There are a couple very simple ways to do this.

For example, when I write client code to process a response, I almost always include
code that first checkes for the existence of an element before attempting to parse it.
Here’s some client code that you’ll likely find the in examples associated with this
book.

// handle title
function title() {
 var elm;

 if(hasTitle(g.cj.collection)===true) {
 elm = d.find("title");
 elm.innerText = g.cj.collection.title;
 elm = d.tags("title");
 elm[0].innerText = g.cj.collection.title;
 }
}

110 | Chapter 4: Versioning and the Web

www.it-ebooks.info

http://www.it-ebooks.info/

You can see that I first check to see if the collection object has a title property
(callout #1). If yes, I can continue processing it.

Here’s another example where I supply local default values for cases where the service
response is missing expected elements (callout #1) and check for the existence of a
property (callout #2):

function input(args) {
 var p, lbl, inp;

 p = node("p");
 p.className = "inline field";
 lbl = node("label");
 inp = node("input");
 lbl.className = "data";

 lbl.innerHTML = args.prompt||"";

 inp.name = args.name||"";
 inp.className = "value "+ args.className;

 inp.value = args.value.toString()||"";

 inp.required = (args.required||false);

 inp.readOnly = (args.readOnly||false);

 if(args.pattern) {
 inp.pattern = args.pattern;
 }
 push(lbl,p);
 push(inp,p);

 return p;
}

There are other examples of coding defensively that I won’t include here. The main
idea is to make sure that client applications can continue functioning even when any
given response is missing expected elements. When you do this, even most unexpec‐
ted changes will not cause your API consumer to crash.

Code to the Media Type
Another important principle for building resilient API consumer apps is to CODE
TO THE MEDIA TYPE. Essentially, this is using the same approach that was dis‐
cussed in Chapter XX (tk:link). Only this time, instead of focusing on creating a pat‐
tern for converting internal domain data into an output format (via the Representor),
the opposite is the goal for API consumers: convert a standardized output format into
an internal domain model. By doing this, you can go a long way toward protecting
your client application from both semantic and structural changes in the service
responses.

For all the client examples I implement in this book, the media type messages
(HTML, HAL, Cj, and Siren) are converted into the same internal domain model: the
HTML Document Object Model or DOM. The DOM is a consistent and easy model

Guidelines for Non-Breaking Changes | 111

www.it-ebooks.info

http://www.it-ebooks.info/

to work with and writing client-side javascript for it is the way most browser-based
API clients work.

Here is a short code snippet that shows how I convert Siren entities into HTML
DOM objects for rendering in the browser:

 // entities
 function entities() {
 var elm, coll;
 var ul, li, dl, dt, dd, a, p;

 elm = d.find("entities");
 d.clear(elm);

 if(g.siren.entities) {
 coll = g.siren.entities;
 for(var item of coll) {

 segment = d.node("div");
 segment.className = "ui segment";

 a = d.anchor({
 href:item.href,
 rel:item.rel.join(" "),
 className:item.class.join(" "),
 text:item.title||item.href});
 a.onclick = httpGet;
 d.push(a, segment);

 table = d.node("table");
 table.className = "ui very basic collapsing celled table";
 for(var prop in item) {
 if(prop!=="href" &&
 prop!=="class" &&
 prop!=="type" &&
 prop!=="rel") {

 tr = d.data_row({
 className:"item "+item.class.join(" "),
 text:prop+" ",
 value:item[prop]+" "
 });
 d.push(tr,table);
 }
 }
 d.push(table, segment);

 d.push(segment, elm);
 }
 }
 }

It might be a bit tough to see how the HTML dom is utilized in this example since I
use a helper class (the d object) to access most of the DOM functions. But you can see

112 | Chapter 4: Versioning and the Web

www.it-ebooks.info

http://www.it-ebooks.info/

that, for each Siren entity I create an HTML div tag (callout #1). I then create an
HTML anchor tag (callout #2) for each item. I set up an HTML <table> to hold the
Siren entity’s properties (callout #3) and add a new table row (<tr>) for each one
(callout #4). Finally, after completing all the rows in the table, I add the results to the
HTML page for visible display (callout #5).

This works because all the implementation examples in this book for common HTML
browsers. For cases where the target clients are mobile devices or native desktop
applications, I need to work out another strategy. One way do handle this is to create
“reverse representors” for each platform. In other words, create a custom Format-to-
Domain handler for iOS, one for Andriod, and for Windows Mobile, etc. Then the
same for Linux, Mac, and Windows desktops, and so forth. This can get tedious,
though. That’s why using the browser DOM is still appealing and why some mobile
apps rely on tools like Apache Cordova, Mono, Appcelerator and other cross-
platform development environments.

Client-Side Representors

As of this writing, there are a number of efforts to build Represen‐
tor libraries that focus on the client — the ‘reverse’ of the example I
outlined in Chapter XX(tk:link). The team at Apiary are working
on the Hyperdrive project. The Hypermedia Project is a Micro‐
soft.NET specific effort. And Joshua Kalis has started a project (to
which I am a contributor) called Rosetta. Finally, the Yaks project is
an independent OSS effort to create a framework that includes the
representor pattern to support plug-ins for new formats.
There may be more projects by the time you read this book, too.

Leverage the API Vocabulary
Once you start building clients that CODE TO THE MEDIA TYPE, you’ll find that
you still need to know domain-specific details that appear in responses. Things like:

• Does this response contain the list of users I asked for?
• How do I find all the inactive customers?
• Which of these invoice records are over-due?
• Is there a way for me to find all the products that are no longer in stock in the

warehouse?

All these questions are domain-specific and are not tied to any single response format
like HAL, Cj, Siren, etc. One of the reasons the HTML browser as been so powerful is
that the browser source code doesn’t need to know anything about acounting or user
management. That’s because the user driving the browser knows that stuff. The

Guidelines for Non-Breaking Changes | 113

www.it-ebooks.info

https://github.com/the-hypermedia-project/Hyperdrive
https://github.com/DotNetHypermedia/DotNetHypermedia
https://github.com/ubiquitary
https://github.com/plexus/yaks
http://www.it-ebooks.info/

browser is just the agent of the human user. That’s why we often refer to browsers as
‘user agents.’ For many API client cases, there is a human user available to interpret
and act upon the domain-specific information in API responses. However, there are
cases where the API client is not acting as a direct ‘user agent.’ Instead it is just a mid‐
dleware compontent or utility app tasked with some job by itself (e.g. find all the
overdue invoices, etc.). In these cases, the client app needs to have enough domain
information to complete it’s job. And that’s where API Vocabularies come in.

There are a handful of projects focused on documenting and sharing domain-specific
vocabularies over the WWW. One of the best know examples of this is the
Schema.org project (pronounced schema dot org). Schema.org contains lists of com‐
mon terms for all sorts of domains. Large Web companies like Google, Microsoft, and
Facebook all use Schema.ogr vocabularies to drive parts of their system.

Vocabularies A Plenty

Along with Schema.org, there are other vocabulary efforts such as
the IANA Link Relations registry, the microformats group, and the
Dublin Core Metadata Initiatve or DCMI. I and a few other have
also been working on an Internet draft for Application-Level Prod‐
file Semantics or ALPS for short.
I won’t have time to go into vocabularies in this book and encour‐
age you to check out these and other similar efforts in order to
learn more about how they can be used in your client-side apps.

So what does this all look like? How can you use vocabularies to enable API clients to
act own thier own safely? Basically, you need to “teach” the API consumer to perform
tasks based on some baked-in domain knowlege. For example, I might want to create
an API consumer that uses on service to finds overdue invoices and pass that infor‐
mation off to another service for further processing. This means the API consumer
needs to “know” about invoices and what it means to be “overdue.” If the API I am
using has published a vocabulary, I can look there for the data and action element
idenfiers I need to perform my work.

Here’s what that published vocabulary might look like as expressed in a simplified
ALPS XML document:

<alps>
 <doc>Invoice Management Vocabluary</doc>
 <link rel="invoice-mgmt" href="api.example.org/profile/invoice-mgmt" />

 <!-- data elements -->
 <descriptor id="invoice-href" />
 <descriptor id="invoice-number" />
 <descriptor id="invoice-status">
 <doc>Valid values are: "active", "closed", "overdue"</doc>

114 | Chapter 4: Versioning and the Web

www.it-ebooks.info

http://schem.org
http://www.iana.org/assignments/link-relations/link-relations.xhtml
http://microformats.org/
http://dublincore.org/
http://alps.io/
http://www.it-ebooks.info/

 </descriptor>

 <!-- actions -->
 <descriptor id="invoice-list" type="safe" />
 <descriptor id="invoice-detail" type="safe" />
 <descriptor id="invoice-search" type="safe">
 <descriptor href="#invoice-status" />
 </descriptor>
 <descriptor id="write-invoice" type="unsafe">
 <descriptor href="#invoice-href" />
 <descriptor href="#invoice-number" />
 <descriptor href="#invoice-status">
 </dscriptor>
</alps>

Now, when I build my client application, I know that I can “teach” that app to under‐
stand how to deal with an invoice record (invoice-number and invoice-status) and
know how to search for overude invoices (used search-invoice with the invoice-
status value set to "overude"). All I need is the starting address for the service and
the ability to recognize and execute the search for overdue invoices. The pseudo-code
for that example might look like this:

:: DECLARE ::

search-link = "invoice-search"
search-status = "overdue"
write-invoice = "write-invoice"
invoice-mgmt = "api.example.org/profile/invoice-mgmt"

search-href = "http://api.example.org/invoice-mgmt"
search-accept = "application/vnd.siren+json"

write-href = "http://third-party.example.org/write-invoices"
write-accept = "application/vnd.hal+json"

:: EXECUTE ::
response = REQUEST(search-href AS search-accept)

IF(response.vocabulary IS invoivce-mgmt) THEN
 FOR-EACH(link IN response)
 IF(link IS search-link) THEN

 invoices = REQUEST(search-link AS search-accept WITH search-status)
 FOR-EACH(link IN invoices)
 REQUEST(write-href AS write-accept

 FOR write-invoice WITH EACH invoice)
 END-FOR
 END-IF
 END-FOR
END-IF

:: EXIT ::

Guidelines for Non-Breaking Changes | 115

www.it-ebooks.info

http://www.it-ebooks.info/

Although this is only imaginary psuedo-code, you can see the app has been loaded
with domain-specific information (callout #1). Then, after the initial request is made,
the response is checked to see if it promises to use the invoice-mgmt vocabluary (cal‐
lout #2). If that check passes, the app searches all the links in the response to find the
search-link and, if found excecutes a search for all invoices with the status of over
due (callout #3). Finally, if any invoices are returned in that search, they are sent to a
new service using the write-invoice action (callout #4).

Something to note here is that the defensive coding is on display (the IF statements)
ad the code has only initial URLs memorized — the remaining URLs come from
within the responses themselves.

Leveraging Vocabularies for your API means you can focus on the important aspects
(the data elements and actions) and not worry about plumbing details such as URL
matching, memorizing the location of a data element within a document, etc.

React to Link Relations for Workflow
The last client implementation principle I’ll cover here is to REACT TO LINK RELA‐
TIONS FOR WORKFLOW. This means, when working to solve a multi-step prob‐
lem, focus on selected link relation values instead of writing client apps that
‘memorize’ a fixed set of steps. This is important because memorizing a fixed set pf
steps is a kind of ‘tight-binding’ of the client to a fixed sequence of events that may
not actually happen at runtime due to transient context issues (e.g. part of the service
is down for maintence, the logged in use no longer has rights to one of the steps, etc).
Or, over time, new steps might be introduced or the order of events might change
within the service. These are all reasons to NOT bake multi-step details into your cli‐
ent app.

Instea, since the the service you are using has also followed the API principles of
DOCUMENT LINK IDENTIFIERS, PUBLISH VOCABULARIES, and DON’T
TAKE THINGS AWAY, you can leverage this information and implement a client that
is “trained” to look for the proper identifiers and use vocabulary information to know
which data elements need to be passed for each operation. Now, even if the links are
moved within a response (or even moved to a different response) your client will still
be able to accomplish your goal well into the future.

One way to approach this REACT TO LINKS principle is to isolate all the important
actions the client will need to take and simply implement them as state-alone opera‐
tions. Once that is done, you can write a single routine that 1) makes a request, 2)
inspects that request for one of the ‘known’ actions, and when found, executes the
recognized action.

Below is an example of a twitter-like quote-bot I created for my 2011 book Building
Hypermedia APIs.

116 | Chapter 4: Versioning and the Web

www.it-ebooks.info

http://www.it-ebooks.info/

/* these are the things this bot can do */
function processResponse(ajax) {
 var doc = ajax.responseXML;

 if(ajax.status===200) {
 switch(g.status) {
 case 'start':
 findUsersAllLink(doc);
 break;
 case 'get-users-all':
 findMyUserName(doc);
 break;
 case 'get-register-link':
 findRegisterLink(doc);
 break;
 case 'get-register-form':
 findRegisterForm(doc);
 break;
 case 'post-user':
 postUser(doc);
 break;
 case 'get-message-post-link':
 findMessagePostForm(doc);
 break;
 case 'post-message':
 postMessage(doc);
 break;
 case 'completed':
 handleCompleted(doc);
 break;
 default:
 alert('unknown status: ['+g.status+']');
 return;
 }
 }
 else {
 alert(ajax.status);
 }
}

In the above example, this routine constantlly monitors the apps current internal sta
tus and, it is changes from one state to another, this app knows just what to be look‐
ing for within the current response and/or what action to take in order to advance to
the next step in the effort to reach the final goal. For this bot, the goal is to post insip‐
rational quotes to the social media feed. This bot also knows that it might need to
authenticate in order to access the feed or possibly even create a new user account.
Notice the use of the javascript switch…case structure here. There is no notion of
‘execution order’ written into the code. Just a set of possible states and related opera‐
tions to attempt to execute.

Guidelines for Non-Breaking Changes | 117

www.it-ebooks.info

http://www.it-ebooks.info/

Writing clients in this way allows you to create middleware components that can
accomplish a set goal without forcing that client to memorize a particular order of
events. That means even when the order of things changes over time — as long as the
changes are made in a backward-compatible way — this client will still be able to
complete it’s assigned tasks.

So, some valuable principles for implemnting clients that support change-over-time
include:

• Code Defensively
• Code to the Media Type
• Leverage the API Vocabulary
• React to Link Relations for Workflow

Summary
This chapter focuses on dealing with the challenge of ‘change-over-time’ for Web
APIs. We looked at examples of planning for and handling change over the decades
in three key Web-related fields: TCP/IP and Postel’s Law, HTTP and the MUST
IGNORE principle, and the backward-compatibility pledge that underpins the design
of HTML. We then looked that some general principles we can use when designing
APIs, implementing API services, and building client apps that consume those APIs.

The key message of this chapter is that change is inevitable and the way to deal with it
is to plan ahead and to adopt the point of view that all changes do not REQUIRE you
break the interface. Finally, we learned that successful organizations adopt a change
aesthetic — a collection of related principles that help guide API design, the inform
service implementors, and encourage API consumers to all work toward maintaining
backward-compatibility.

Bob and Carol
“Hi, Bob. I decided to stop over to see how you
dealt with all the _versioning_ stuff we talked
about a last week.”

“Hey, Carol. Good to see you. You know, we found
a number of examples similar to the ones you

mentioned in our last get-together. Postel’s Law for
TCP/IP, HTTP’s MUST IGNORE principle, even a quote

from Tim Beners-Lee about how HTML parsers should
ignore things they don’t understand.”

118 | Chapter 4: Versioning and the Web

www.it-ebooks.info

http://www.it-ebooks.info/

“So, that’s 25 or more years of dealing with change
that never invalidated exsiting implementations,
right? That’s encouraging. But these are all trans‐

port and transfer-level specifications. Our challenge is at the
application domain level, right? "

“Yep. And that definitely makes things a bit more
interesting -- but not at all impossible. While the

actual _implemetation_ deatils for TCP/IP and
HTTP might be different, the _principles_ behind them
apply to all aspects of API design and implementation.”

“Great, so we can just ignore all the versioning
stuff, then and keep rolling along.”

“No, that’s not quite right. We identified a number
of important principles that we will be publishing

to all our teams. They need guidance on how to
design and build APIs that can handle change-over-time in

a backward-compatible way.”

“Backward-compatible way. That’s the key, isn’t,
Bob? With that as our key principle, we can help
teams continue to add features and enrich data

responses without breaking existing apps.”

“Exactly. I’ve emailed you the list of recommended
principles already and we’ll incorprate that into the

guidance docs we share with everyone.”

“Sounds great. By the way, what’s the story on
those new features you promised me in our last
meeting?”

“Oh, didn’t you hear? We released those into pro‐
duction yesterday. I guess you never noticed since
we didn’t have to break any existing clients in the

process.”

Summary | 119

www.it-ebooks.info

http://www.it-ebooks.info/

“Well played, Bob. Well played.”

References
1. Blaise Pascal’s Wager has more to do with the nature of uncertainty and probabil‐

ity theory than anything else. A decent place to start reading about his Wager is
the Wikipedia entry.

2. Alan Kay’s 2011 talk on Programming and Scaling contains a commentary on how
TCP/IP has been updated and improved over the years without ever having to
“stop” the Internet.

3. TCP/IP is documented in two key IETF documents: RFC793 (TCP) and RFC791
(IP).

4. The Client tolerance of bad servers note can be viwed in the W3C’s HTTP proto‐
col archive pages.

5. The IETF specification document for RFC1945 contains eight separate examples
of the MUST IGNORE principle. The HTTP 1.1 specifcation (RFC2616) has
more than 30 examples.

6. Dave Orchard’s 2003 blog post: “Versioning XML Vocabularies” does a good job
of illustrating a number of valubale “Must Ignore” patterns.

7. Tim Berner-Lee’s Markup archive from 1992 is a great source for those looking
into the earliest days of HTML

8. The “2119 Words” can be found in IETF’s RFC2119.
9. The book _Software Architecture in Practice+ was written by Len Bass, Paul

Clements, and Rick Kazman.
10. I learned about Github’s approach to managing backward compatibility from a

Yandex 2013 talk by Jason Rudolph on “API Design at Github”. As of this writing,
the video and slides are still available online.

11. The Schema.org effort includes the [http://schema.org]website, a W3C commu‐
nity site, a github repository and an online discussion group.

12. The book Building Hypermedia APIs is a kind of ‘companion’ book to this one.
That book focuses on API design with some server-side implementation details.

120 | Chapter 4: Versioning and the Web

www.it-ebooks.info

https://en.wikipedia.org/wiki/Pascal%27s_Wager
https://youtu.be/YyIQKBzIuBY?t=950
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc791
http://www.w3.org/Protocols/HTTP/OldServers.html
http://www.w3.org/Protocols/HTTP/OldServers.html
https://tools.ietf.org/html/rfc1945
https://tools.ietf.org/html/rfc2616
http://www.xml.com/pub/a/2003/12/03/versioning.html
http://www.w3.org/History/19921103-hypertext/hypertext/WWW/MarkUp/MarkUp.html
https://tools.ietf.org/html/rfc2119
https://events.yandex.com/events/yac/2013/talks/42/
http://www.slideshare.net/yandex/api-design-at-github-jason-rudolph-github
http://schema.org
https://www.w3.org/community/schemaorg/
https://www.w3.org/community/schemaorg/
https://github.com/schemaorg/schemaorg
https://lists.w3.org/Archives/Public/public-schemaorg/
http://www.it-ebooks.info/

CHAPTER 5

Collection+JSON Clients

“The human animal differs from the lesser primates in his passion for lists.”
—H. Allen Smith

Bob and Carol
“You know, Carol, I’ve been reviewing the Collec‐
tion+JSON hypermedia format and wondering if it
would help us on our quest for a more adaptable

API client.”

“Interesting that you should mention Cj, Bob. My
team was just considering it as the next one to try.

They tell me it may be promising.”

“Right. I notice that Cj looks a lot like Siren and
HAL but also has some things in the docs about
how clients can use the CRUD pattern similar to

the way our plain JSON client did.”

“Exactly! And, along with support for CRUD, Cj
offers support for query templates similar to the

action elements in Siren.”

“However, I am a bit skeptical about the way Cj
sends data in it’s Items collection. That seems a bit
odd.”

121

www.it-ebooks.info

http://www.it-ebooks.info/

“Well, that’s what most of our discussion was about
yesterday. Cj requires additional metadata for each

domain object and that means it will be hard to
simply ‘deserialize’ our domain objects into the response as

we do in Siren and HAL.”

“Huh, so that’s more work for the server-side rep‐
resentor and more payload on the client, right? I
wonder if we need all that information.”

“Well, as far as we can tell, Cj payload size is not
any larger than our typical HTML payloads and we

send HTML all the time.”

“Hmmm. Interesting. I wonder if that metadata
provides something important we can’t see yet?”

“Well, some on my client-side team think that
additional metadata will improve adaptability over

time.”

“Really? Well, let’s try it out. My team can build up
a Cj representor pretty quickly on the server side.
And your group should be able to create a Cj client

without too much trouble, right Carol?”

“That’s right, Bob. Let’s see what our teams come
up with and meet back here in another week.”

“Ok, Carol. Let’s do it!”

The last hypermedia format we’ll review in this book is the Collection+JSON format.
It has similarities with both HAL (Chapter XX TK) and Siren (Chapter XX TK) but
also has a rather unique approach. The Cj format is designed, from the very begin‐
ning, as a list-style format — it is meant to return lists of records. As we’ll see when we
review the design in the next section, there is more to the format than just the list, but
lists is are what Cj is all about.

122 | Chapter 5: Collection+JSON Clients

www.it-ebooks.info

http://www.it-ebooks.info/

Cj also takes a cue from the classic Create-Read-Update-Delete (CRUD) pattern used
by most Web API clients today. We covered this style in Chapter XX (TK) and some
of the lessons from the client we built in that chapter will apply for the Cj client, too.

In this chapter we’ll take a quick look at format design, the Cj Representor code and
the Cj general client. Then, as we have for other client implementations, we’ll intro‐
duce changes to see how well the API client holds up as the backend API makes
backward-compatible changes.

Finally, we’ll be sure to check in on our progress along the path to meeting the OAA
Challenge. While HAL excels at handling ADDRESSES and Siren has great support
for ACTIONS, Cj was designed to meet the OBJECTS challenge — the ability to share
metadata about the domain objects at runtime. And, as we’ll see in the review, Cj
meets the OBJECT challenge with a novel solution — by making them inconsequen‐
tial to the client-server experience.

The Collection+JSON Format
I designed and published the Collection+JSON format in 2011 — the same year Mike
Kelly released his HAL (tk chapter) specification. Collection+JSON (aka Cj) was
designed to make it easy to manage lists of data like blog posts, customers, products,
users, etc. The description that appears on the Cj specification page says:

“[Cj] is similar to the The Atom Syndication Format (RFC4287) and the The Atom
Publishing Protocol (RFC5023) . However, Collection+JSON defines both the format
and the protocol semantics in a single media type. [Cj] also includes support for Query
Templates and expanded write support through the use of a Write Template.”

—Collection+JSON specs

Essentially, Cj is Atom in JSON with FORMs. The good news is that Cj follows’
Atom’s support for the Create-Read-Update-Delete (CRUD) pattern. That means
most developers can understand Cj’s read/wrire semantics rather easily. the added
bonus for Cj is that it has elements for describing HTML-like FORMs for filtering
data (with Cj’s queries element) and for updating content on the server (via the tem‐
plate) element. However, as we’ll see in the review that follows, the way the template
element is used can be a bit of a challenge.

The Collection+JSON Format | 123

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 5-1. The Collection+JSON Document Model

You can get a better understanding of the Collection+JSON media
type by checking out the online Cj documentation. There is also a
Cj discussion list and github organization where additional infor‐
mation is shared. See the References section (TK) of this chapter
for details.

The basic elements of every Cj message are:

• Links : A set of one or more link elements. These are very similar to HAL and
Siren link elements

• Items : One or more data items — basically the APIs domain objects. The proper
ties of HAL and Siren are very similar to Cj items.

• Queries : These are basically HTML “GET” FORMs. Cj queries are like HAL’s
templated links and Siren’s action elements (with the method set to “GET”)

• Template : In Cj all write operations (HTTP POST & PUT) are done using the
template element. It contains one or more data objects — each one like HTML
input elements. Again, this is like Siren action elements. HAL doesn’t have any‐
thing that match the Cj template

124 | Chapter 5: Collection+JSON Clients

www.it-ebooks.info

http://www.it-ebooks.info/

Cj also has an error element for returning error information and a content element
for returning free-form text and markup. We’ll not cover these here today. You can
read up on them in the Cj documentation mentioned in the refernce section. (TK).

Here’s an example of a simple Collection+JSON message that shows the major sec‐
tions of a Cj document including links (#1), items (#2), queries (#3), and the tem
plate (#4) element.

{
 "collection": {
 "version": "1.0",

 "href": "http://orm-hyper-todo.herokuapp.com",
 "title": "ORM Hyper-Tasks",

 "links": [
 {
 "href": "http://orm-hyper-todo.herokuapp.com/",
 "rel": "collection",
 "prompt": "All task"
 }
],

 "items": [
 {
 "rel": "item",
 "href": "http://orm-hyper-todo.herokuapp.com/1sv697h2yij",
 "data": [
 {"name": "id", "value": "1sv697h2yij", "prompt": "id"},
 {"name": "title", "value": "Marina", "prompt": "title"},
 {"name": "completed", "value": "false", "prompt": "completed"}
]
 },
 {
 "rel": "item",
 "href": "http://orm-hyper-todo.herokuapp.com/25ogsjhqtk7",
 "data": [
 {"name": "id", "value": "25ogsjhqtk7", "prompt": "id"},
 {"name": "title", "value": "new stuff", "prompt": "title"},
 {"name": "completed", "value": "true", "prompt": "completed"}
]
 }
],

 "queries": [
 {
 "rel": "search",
 "href": "http://orm-hyper-todo.herokuapp.com/",
 "prompt": "Search tasks",
 "data": [
 {"name": "title", "value": "", "prompt": "Title"}
]
 }
],

 "template": {

The Collection+JSON Format | 125

www.it-ebooks.info

http://www.it-ebooks.info/

 "prompt": "Add task",
 "rel": "create-form",
 "data": [
 {"name": "title", "value": "", "prompt": "Title"},
 {"name": "completed", "value": "false", "prompt": "Complete"}
]
 }
 }
}

Another important attribute of a Cj document is the root-level href (see callout #5).
The value of href is used when adding a new record to the items collection. We’ll talk
more about this property when we cover the template element in below (TK ref).

Links
The links element in a Cj document is always a valid JSON array that contains one
or more link objects. Important link element properties include href, rel, and
prompt properties. These work similar to the way HTML <a>… tags — static
URLs for HTTP GET actions.

Representing Links in Collection+JSON

"links": [
 {
 "href": "http://rwcbook12.herokuapp.com/home/",
 "rel": "home collection",
 "prompt": "Home"
 },
 {
 "href": "http://rwcbook12.herokuapp.com/task/",
 "rel": "self task collection",
 "prompt": "Tasks"
 },
 {
 "href": "http://rwcbook12.herokuapp.com/user/",
 "rel": "user collection",
 "prompt": "Users"
 }
]

In Cj, the links section typically holds links that are relevant for the current docu‐
ment or, in a human-centric UI, the current screen or Web page. Along with impor‐
tant navigation links for the app (see in the above example), the links section may
include things like page-level navigation (first, previous, next, last) or other simi‐
lar links.

Another handy property on Cj link objects is the render property. This tells con‐
suming apps how to treat the link. For example, if the render value is set to "none",

126 | Chapter 5: Collection+JSON Clients

www.it-ebooks.info

http://www.it-ebooks.info/

client apps are not expected to display the link. This is handy when passing link ele‐
ments for things like CSS stylsheets, profile URLs, or other types of information.

Representing Links in Collection+JSON

"links": [
 {
 "href": "http://api.example.org/profiles/task-management",
 "rel": "profile",
 "render" : "none"
 }
]

Items
Probably the most unique element in Cj documents is the item section. The items
section is similar to HAL’s root-level properties and Siren’s properties object, Cj
items contain the domain objects in the response like “users”, “customers”, “products”,
and so forth. However, unlike the way HAL and Siren express domain objects, Cj has
a highly structured approach. HAL and Siren express their domain objects as either
simple name-value pairs or, in the case of Siren, as subentities. And both HAL and
Siren support sending nested JSON objects as properties. But Cj doesn’t work like
that and this can be a source of both frustration and freedom.

Here is an example of a “user” object expressed as a Cj item:

{
 "rel": "item http://api.example.org/rels/user",

 "href": "http://api.example.org/user/alice",

 "data": [
 {"name": "id", "value": "alice", "prompt": "ID", "render":"none"},
 {"name": "nick", "value": "alice", "prompt": "Nickname"},
 {"name": "email", "value": "alice-ted@example.org", "prompt": "Email"},
 {"name": "name", "value": "Alice Teddington, Jr.", "prompt": "Full Name"}
],

 "links": [
 {
 "prompt": "Change Password",
 "rel": "edit-form http://api.example.org/rels/changePW",
 "href": "http://api.example.org/user/pass/alice"
 },
 {
 "prompt": "Assigned Tasks",
 "rel": "collection http://api.example.org/rels/filterByUser",
 "href": "http://api.example.org/task/?assignedUser=alice"
 }
]
}

The Collection+JSON Format | 127

www.it-ebooks.info

http://www.it-ebooks.info/

As you see in the above example, a Cj item contains the rel and href (#1), a list of
data elements (#2) and may also contain one or more link elements for read-only
actions associated with the item. The way Cj expresses the item properties (id, nick,
email and name) is unique among the formats covered in this book. Cj documents
return not just the property identifier and value (e.g. "id":"alice") but also a
suggested +prompt property. Cj also supports other attributes including render to
help clients decide whether to display the property on screen. This highly structured
format makes it possible to send both the domain data and metadata about each
property and object. As we’ll see when we start working on the Cj client app, this
added data comes in handy wen creating a human-centri interface.

The links collection within each Cj item contains one or more static safe links (like
those in the root-level links collection. This space can be used to pass item-level
links within a Cj response. For example, in the snippet above, you can see a link that
points to a form for updating the user password and a link that points to a filtered list
of tasks related to this user object. The item-level links section is optional and any
link that appears in the collection MUST be treated as a safe link (e.g. dereferenced
using HTTP GET).

Queries
The queries element in Collection+JSON is meant to hold safe requests (e.g. HTTP
GET) that have one or more parameters. These are similar to HTML FORMS with
the method attribute set to “GET”. The queries section in a Cj document is an array
with one or more query objects. They look similar to Cj link objects but can have an
associated data array, too.

Here’s an example:

{
 "rel": "search",
 "name" : "usersByEmai",
 "href": "http://api.example.org/user/",
 "prompt": "Search By Email",
 "data": [
 {
 "name": "email",
 "value": "",
 "prompt": "Email",
 "required": "true"
 }
]
}

As you can see from the above example, a Cj query object has rel, name, href, and
prompt attributes. Then there is one or more data elements. The data elements are
similar to HTML input elements. Along with the name, value, and prompt attributes,

128 | Chapter 5: Collection+JSON Clients

www.it-ebooks.info

http://www.it-ebooks.info/

data elements can have required and (not shown above) readOnly and pattern
attributes. These last attributes help service send clients additional metadata about
the arguments for a query.

Note that Cj query objects do not have an attribute to indicate which HTTP method
to use when executing the query. that is because Cj queries always use the HTTP GET
method.

There is another Cj element that is similar to HTTP FORM: the template element.

Template
Cj’s template element looks similar to the Cj queries element — but even smaller. It
just has a set of one or more data objects. These represent the input arguments for a
write action (e.g. HTTP POST or PUT). Here’s what a Cj template looks like:

"template": {
 "prompt": "Add Task",
 "data": [
 {"name": "title", "value": "", "prompt": "Title", "required": "true"},
 {"name": "tags", "value": "", "prompt": "Tags"},
 {"name": "completeFlag", "value": "false", "prompt": "Complete",
 "patttern": "true|false"}
]
}

The template element can have an optional prompt, but the most important part of
the template is the data array that decribes the possible input arguments for the
write operation. Like the data elements that appear in Cj queries and items, the tem
plate’s data items include name and value properties along with a prompt property.
And, like the queries version of data elements, they can have additional metadata
attributes including readOnly, required and pattern. The pattern element works
the same way as the HTML pattern attribute.

There are two important aspects of write operations that are missing from the Cj tem
plate: 1) the target URL, and 2) the HTTP method. That’s because, in Cj, the tem
plate applies to two different parts of the CRUD model: “create” and “update”. Just
how the request is executed depends on what the client app wants to do.

Using Cj Templates to Create New Resouces
When used to create a new member of the collection, the client app fills out the tem‐
plate and then uses the HTTP POST for the method the the value of the Cj docu‐
ment’s href as the target URL.

The Collection+JSON Format | 129

www.it-ebooks.info

http://www.it-ebooks.info/

For example, using the CJ document represented at the start of this chapter (TK ref),
a client application can collect inputs from a user and send a POST request to add a
new TASK record. The HTTP request would look like this:

*** REQUEST ***

POST / HTTP/1.1
Host: http://orm-hyper-todo.herokuapp.com
Content-Type: application/vnd.collection+json
...

"template": {
 "data": [
 {"name": "title", "value": "adding a new record"},
 {"name": "tags", "value": "testing adding"},
 {"name": "completeFlag", "value": "false"}
]
}

The Cj specification says that clients can send the template block
(as seen above OR just send an array of data objects and servers
SHOULD accept both. Also, servers SHOULD accept payloads
with data objects that include prompts and other properties and
just ignore them.

As you can see in the example above, the URL from the Cj document href along with
the HTTP POST method is used to add a new resource to the Cj collection.

Using Cj Templates to Update and Existing Resource
When client apps want to update an existing resource they use the HTTP PUT
method and the href property of the item to update. Typically, client apps will auto‐
matically fill in the template.data array with the values of the existing item, allow
users to modify that data and then execute the PUT request to send the update infor‐
mation to the server.

*** REQUEST ***

PUT /1sv697h2yij HTTP/1.1
Host: http://orm-hyper-todo.herokuapp.com
Content-Type: application/vnd.collection+json
...
"template": {
 "data": [
 {"name": "id", "value": "1sv697h2yij"},
 {"name": "title", "value": "Marina Del Ray"},
 {"name": "completed", "value": "true"}
]
}

130 | Chapter 5: Collection+JSON Clients

www.it-ebooks.info

http://www.it-ebooks.info/

Note that (at callout #1) the URL from the item’s href property is used along with the
HTTP PUT method. This is how Cj clients use the template to update an existing
item.

So, one template, two ways to use it. That’s how Cj describes write operations.

Error
The Collection+JSON design also includes an error element. This is used to pass
domain-specific error information from server to client. For example, if a resource
cannot be found or an attempt to update an existing record failed, the server can use
the error element to return more than HTTP 404 or 400. It can return a text descrip‐
tion of the problem and even include advice on how to fix it.

For example, if a someone attempted to assign a TPS TASK to a non-existant user, the
server might respond like this:

{
 "collection": {
 "version": "1.0",
 "href": "//rwcbook12.herokuapp.com/error/",
 "title": "TPS - Task Processing System",
 "error": {
 "code": 400,
 "title": "Error",
 "message": "Assigned user not found (filbert). Please try again.",
 "url": "http://rwcbook12.herokuapp.com/task/assign/1l9fz7bhaho"
 }
 }
}

A mentioned earlier, there are some additional elements and properties of Cj docu‐
ments that I won’t cover here. You can check out the full specification at the online
site listed in the Reference section at the end of this chapter (TK).

A Quick Summary
By now, we can see that the three featured hypermedia types (HAL, Siren, and Cj)
have several things in common. Like HAL and Siren, Cj has an element (links) for
communicating Links or ADDRESSES. And, like Siren, Cj’s queries and template
elements communicate ACTION metadata in responses. And all three have a way to
communicate domain-specific objects (HAL’s root-level properties, Siren’s proper
ties object and Cj’s items collection). Cj’s items collection is unique since it includes
metadata about each property in the domain object (e.g. prompt & render). This ele‐
vates Cj’s ability to handle the OBJECT aspect of the OAA Challenge. We’ll talk about
this again when we build the Cj client app.

The Collection+JSON Format | 131

www.it-ebooks.info

http://www.it-ebooks.info/

For now, we have enough background to review the Cj Representor and then walk
through our Cj Client SPA code.

The Collection+JSON Representor
As with other formats, the process of coding a Cj Representor is a matter of convert‐
ing our internal resource representation (in the form of a WeSTL object) into a valid
Collection+JSON document. And, like the other representors, it takes only about 300
lines of NodeJS to build up a fully-functional module to produce valid Cj responses.

The source code for the Cj Representor can be found in the associ‐
ated github repo here: https://github.com/RWCBook/cj-client. A
running version of the app described in this chapter can be found
here: http://rwcbook12.herokuapp.com/ (TK: check URLs)

Below is a quick walk-through of the Cj Representor code with highlights.

The Top-Level Processing Loop
The top-level processing loop for my Cj Representor is very simple. It starts by initial‐
izing an empty collection object (to represent a Cj document in JSON) and then
populates this object with each of the major Cj elements:

• Links
• Items
• Queries
• Template
• Error (if needed)

Here’s what the function looks like:

function cj(object, root) {
 var rtn;

 rtn = {};

 rtn.collection = {};
 rtn.collection.version = "1.0";

 for(var o in object) {

 rtn.collection.href = root+"/"+o+"/";

 rtn.collection.title = getTitle(object[o]);
 rtn.collection.links = getLinks(object[o].actions);
 rtn.collection.items = getItems(object[o],root);
 rtn.collection.queries = getQueries(object[o].actions);

132 | Chapter 5: Collection+JSON Clients

www.it-ebooks.info

https://github.com/RWCBook/cj-client
http://rwcbook12.herokuapp.com/
http://www.it-ebooks.info/

 rtn.collection.template = getTemplate(object[o].actions);

 // handle any error

 if(object.error) {
 rtn.collection.error = getError(object.error);
 }
 }
 // send results to caller

 return JSON.stringify(rtn, null, 2);
}

The code above has just a few interesting items. After intializing a collection docu‐
ment (#1) and establishing the document-level href (#2), the code walks through the
passed-in WeSTL object tree (#3) and constructs the Cj title, links, items, quer
ies, and template elements. Then, if the current object is an error, the Cj error ele‐
ment is populated (#4). Finally, the completed Cj document is returned (#5) to the
caller.

Now, let’s take a look at each of the major routines used to build up the Cj document.

Links
The links element in Cj holds all “top-level” links for the document. The Cj Repre‐
sentor code scans the incoming WesTL object for any action element that qualifies
and, if needed, resolves any URI templates before adding the link to the collection.

Here’s the code:

// get top-level links
function getLinks(obj, root, tvars) {
 var link, rtn, i, x, tpl, url;

 rtn = [];
 if(Array.isArray(obj)!==false) {

 for(i=0,x=obj.length;i<x;i++) {
 link = obj[i];
 if(link.type==="safe" &&
 link.target.indexOf("app")!==-1 &&

 link.target.indexOf("cj")!==-1)
 {
 if(!link.inputs) {
 tpl = urit.parse(link.href);

 url = tpl.expand(tvars);

 rtn.push({
 href: url,
 rel: link.rel.join(" ")||"",
 prompt: link.prompt||""
 });
 }
 }

The Collection+JSON Representor | 133

www.it-ebooks.info

http://www.it-ebooks.info/

 }
 }

 return rtn;
}

Here are the high points in the getLinks function:

1. If we have action objects, loop through them
2. First, check to see if the current link meets the criteria for top-level links in a Cj

document
3. If it does, use the passed-in tvars collection (template variables) to resolve any

URI Template
4. Then add the results to the link collection
5. Finally, return the populated collection to the caller.

Items
The next interesting function is the one that handles items. This is the most involved
routinr in the Cj Representor. That’s because Cj does quite a bit to supply both data
and metadata about each domain object is passes to the client app.

Here’s the code.

// get list of items
function getItems(obj, root) {
 var coll, temp, item, data, links, rtn, i, x, j, y;

 rtn = [];
 coll = obj.data;
 if(coll && Array.isArray(coll)!==false) {
 for(i=0,x=coll.length;i<x;i++) {
 temp = coll[i];

 // create item & link

 item = {};
 link = getItemLink(obj.actions);
 if(link) {
 item.rel = (Array.isArray(link.rel)?link.rel.join(" "):link.rel);
 item.href = link.href;
 if(link.readOnly===true) {
 item.readOnly="true";
 }
 }

 // add item properties
 tvars = {}
 data = [];

134 | Chapter 5: Collection+JSON Clients

www.it-ebooks.info

http://www.it-ebooks.info/

 for(var d in temp) {
 data.push(
 {
 name : d,
 value : temp[d],
 prompt : (g.profile[d].prompt||d),
 render:(g.profile[d].display.toString()||"true")
 }
);
 tvars[d] = temp[d];
 }
 item.data = data;

 // resolve URL template
 tpl = urit.parse(link.href);
 url = tpl.expand(tvars);
 item.href = url;

 // add any item-level links
 links = getItemLinks(obj.actions, tvars);
 if(Array.isArray(links) && links.length!==0) {
 item.links = links;
 }

 rtn.push(item);
 }
 }

 return rtn;
}

The getItems routine is the largest in the Cj Representor. It actually handles three
key things, the URL for the item, the item’s data properties, and any links associated
with the item. Here’s the breakdown:

1. For each data item in the list, first set the href property
2. Then loop through the properties of the domain object and construct Cj data

elements.
3. After collecting the data values, use that collection to resolve any URL template

in the item’s href
4. Next, go collect up (and resolve) any Cj link objects for this single item
5. Once all that is done, add the results to the internal item collection and then
6. Finally, return the completed collection to the calling routine.

The resulting item collection looks like this:

"items": [
 {
 "rel": "item",

The Collection+JSON Representor | 135

www.it-ebooks.info

http://www.it-ebooks.info/

 "href": "http://rwcbook12.herokuapp.com/task/1l9fz7bhaho",
 "data": [
 {"name":"id","value":"1l9fz7bhaho","prompt":"ID","render":"true"},
 {"name":"title","value":"extensions","prompt":"Title","render":"true"},
 {"name":"tags","value":"forms testing","prompt":"Tags","render":"true"},
 {"name":"completeFlag","value":"true","prompt":"Complete Flag",
 "render":"true"},
 {"name":"assignedUser","value":"carol","prompt":"Asigned User",
 "render":"true"},
 {"name":"dateCreated","value":"2016-02-01T01:08:15.205Z",
 "prompt":"Created","render":"false"}
],
 "links": [
 {
 "prompt": "Assign User",
 "rel": "assignUser edit-form",
 "href": "http://rwcbook12.herokuapp.com/task/assign/1l9fz7bhaho"
 },
 {
 "prompt": "Mark Active",
 "rel": "markActive edit-form",
 "href": "http://rwcbook12.herokuapp.com/task/active/1l9fz7bhaho"
 }
]
 }
 ... more items here ...
]

Queries
The getQueries routine is the one that generates the “safe” parameterized queries —
basically HTML “GET” FORMS. That means, along with a URL, there is a list of one
or more argument descriptions. These would be the HTML input elements of a
FORM. The code is generating Cj queries is very straightfoward and looks like this:

// get query templates
function getQueries(obj) {
 var data, d, query, q, rtn, i, x, j, y;

 rtn = [];
 if(Array.isArray(obj)!==false) {

 for(i=0,x=obj.length;i<x;i++) {
 query = obj[i];

 if(query.type==="safe" &&
 query.target.indexOf("list")!==-1 &&
 query.target.indexOf("cj") !==-1)
 {

 q = {};
 q.rel = query.rel.join(" ");
 q.href = query.href||"#";
 q.prompt = query.prompt||"";

136 | Chapter 5: Collection+JSON Clients

www.it-ebooks.info

http://www.it-ebooks.info/

 data = [];

 for(j=0,y=query.inputs.length;j<y;j++) {
 d = query.inputs[j];
 data.push(
 {
 name:d.name||"input"+j,
 value:d.value||"",
 prompt:d.prompt||d.name,
 required:d.required||false,
 readOnly:d.readOnly||false,
 patttern:d.pattern||""
 }
);
 }
 q.data = data;

 rtn.push(q);
 }
 }
 }

 return rtn;
}

The walk-through is rather simple:

1. Loop through all the transitions in the WeSTL document
2. Find the transitions that are valid for the cj queries collection
3. Start an empty query object and set the href and +rel= properties.
4. Loop through the WeSTL input elements to create Cj data elements for the

query
5. Add the completed query to the collection
6. Finally, return that collection to the calling routine.

Again, there is no HTTP method supplied for each query since the spec says all Cj
queries should be executed using HTTP “GET”.

That covers the ‘read’ FORMS in Cj. Next is the work to handle the ‘write’ forms — Cj
template.

Template
In Cj, ‘write’ FORMS are represented in the template element. The getTemplate rou‐
tine in our Cj Representor handles generating the template element and the code
looks like this:

// get the add template
function getTemplate(obj) {
 var data, temp, field, rtn, tpl, url, d, i, x, j, y;

The Collection+JSON Representor | 137

www.it-ebooks.info

http://www.it-ebooks.info/

 rtn = {};
 data = [];
 if(Array.isArray(obj)!==false) {
 for(i=0,x=obj.length;i<x;i++) {

 if(obj[i].target.indexOf("cj-template")!==-1) {
 temp = obj[i];

 // emit data elements
 data = [];

 for(j=0,y=temp.inputs.length;j<y;j++) {
 d = temp.inputs[j];

 field = {
 name:d.name||"input"+j,
 value:(d.value||"",
 prompt:d.prompt||d.name,
 required:d.required||false,
 readOnly:d.readOnly||false,
 patttern:d.pattern||""
 };

 data.push(field);
 }
 }
 }
 }
 rtn.data = data;

 return rtn;
}

There is not much to the getTemplate routine, so the highlights are a bit boring:

1. Loop through the WeSTL transitions and find the one valid for Cj template
2. Then loop through the transition’s input collection
3. Use that information to build a Cj data element
4. And add that to the collection of data elements for this template
5. Finally, after adding the completed data collection to the template object, return

the results to the caller.

As a reminder, there is no href property or HTTP method for Cj templates. The
URL and method to use are determined by the client at runtime based on whether the
client is attempting a Create or Update action.

That leaves just one small object to review: the Cj error element.

138 | Chapter 5: Collection+JSON Clients

www.it-ebooks.info

http://www.it-ebooks.info/

Error
Unlike HAL and Siren, Cj has a dedicated error element for responses. This makes is
easy for clients to recognize and render any domai-specific error information in
server responses. There are only four defined fields for the Cj error object: title,
message, code, and url. The getError function is small and looks like this:

// get any error info
function getError(obj) {
 var rtn = {};

 rtn.title = "Error";
 rtn.message = (obj.message||"");
 rtn.code = (obj.code||"");
 rtn.url = (obj.url||"");

 return rtn;
}

There is really nothing to talk about here since the routine is so simple. It is worth
pointing out that Cj responses can include both error information and content in the
links, items, queries, and template elements. That makes is possible to return a
fully-populated Cj document along with some error data to help the user resolve any
problems.

The error object uses the url property to pass the URL related to
the error. In all other Cj elements, the URL is passed in the href
property. This is an inconsistency in the design that I may need to
“fix” someday. But, in keeping with supporting only backward-
compatible changes, that means the future of the error element
will likely include both the url and the href property.

With the Cj Representor walk-through completed, it’s time to review the Cj Client
SPA.

The Collection+JSON SPA Client
OK, now we can review the Collection+JSON Single-Page App (SPA). This Cj client
supports all the major features of Cj including links, items, queries, and template.
It also supports other Cj element including title, content, and error elements.

The source code for the Cj Representor can be found in the associ‐
ated github repo here: https://github.com/RWCBook/cj-client. A
running version of the app described in this chapter can be found
here: http://rwcbook12.herokuapp.com/files/cj.client.html (TK:
check URLs)

The Collection+JSON SPA Client | 139

www.it-ebooks.info

https://github.com/RWCBook/cj-client
http://rwcbook12.herokuapp.com/files/cj.client.html
http://www.it-ebooks.info/

As we did with the JSON, HAL, and Siren SPAs, we’ll start with a review of the
HTML container and them move on to review the top-level parsing routine along
with the major functions that parse the key Cj document sections to build up the rest
of the general Cj client.

The HTML Container
All the SPA apps in this book start with an HTML container and this one is no differ‐
ent. Below is the static HTML that is used to host the Cj documents sent by the
server.

<!DOCTYPE html>
<html>
 <head>
 <title>Cj</title>
 <link href="./semantic.min.css" rel="stylesheet" />
 </head>
 <body>

 <div id="links"></div>
 <div style="margin: 5em 1em">

 <h1 id="title" class="ui page header"></h1>

 <div id="content" style="margin-bottom: 1em"></div>
 <div class="ui mobile reversed two column stackable grid">
 <div class="column">

 <div id="items" class="ui segments"></div>
 </div>
 <div class="column">
 <div id="edit" class="ui green segment"></div>

 <div id="template" class="ui green segment"></div>

 <div id="error"></div>

 <div id="queries-wrapper">
 <h1 class="ui dividing header">
 Queries
 </h1>

 <div id="queries"></div>
 </div>
 </div>
 </div>

 <div>
 <pre id="dump"></pre>
 </div>

 </div>
 </body>
 <script src="dom-help.js">//na </script>

 <script src="cj-client.js">//na </script>
 <script>
 window.onload = function() {

140 | Chapter 5: Collection+JSON Clients

www.it-ebooks.info

http://www.it-ebooks.info/

 var pg = cj();

 pg.init("/", "TPS - Task Processing System");
 }
 </script>
</html>

A lot of the HTML shown above is there to support the layout needs of the CSS
library. But you can still find all the major Cj document elements represented by
<div> tags in the page. They are:

1. The links collection
2. The title element
3. The content element
4. The items element
5. The template element
6. The error element
7. The queries element

The Cj parsing script is loaded at callout #8 and, after everything loads, the initial
request starts at callout #9. that line calls into the top-level parse loop for the Cj
library.

The Top-Level Parse Loop
In the Cj client, the top-level parse loop gets called each time a user makes a selection
in the UI, this follows the Request-Parse-Wait (RPW) pattern I covered in Chapter
XX (TK). It turns out the parse loop for Cj is a bit simpler than the ones for the JSON,
HAL, and Siren clients.

 // init library and start
 function init(url) {
 if(!url || url==='') {
 alert('*** ERROR:\n\nMUST pass starting URL to the Cj library');
 }
 else {
 g.url = url;

 req(g.url,"get");
 }
 }

 // primary loop

 function parseCj() {
 dump();
 title();
 content();
 links();

The Collection+JSON SPA Client | 141

www.it-ebooks.info

http://www.it-ebooks.info/

 items();
 queries();
 template();
 error();
 cjClearEdit();
 }

The code set above looks pretty similar by now. After making the intiial request (cal‐
lout #1), the parseCj routine is called and it walks through all the major elements of a
Collection+JSON document. The only other interesting elements in this code snippet
are the internal routines. First, the call to the dump() method at the start of the loop
— this is just for debugging help on screen — and second, the cjClearEdit() call at
the end of the routine to handle cleaning up the HTML div used to display the UI’s
current editing form.

I’ll skip talking about the title and content routines here — you can check them out
yourself in the soure code. Below is a walk-through of the other major routines to
handle Cj responses.

Links
The routine that handles parsing and rendering Cj links is pretty simple. However, it
has a bit of a twist. The code checks the domain-specific metadata about the link. For
example, some links are not rendered on the screen (e.g. HTML stylesheets, IANA
profile identifiers, etc.). Some other links should actually be rendered as embedded
images instead of navigationel links. The Cj design allows servers to indicate this level
of link metadata in the message itself — something the HAL and Siren clients do not
support in thier design.

Here’s the code for the links() function.

// handle link collection
function links() {
 var elm, coll, menu, item, a, img, head, lnk;

 elm = d.find("links");
 d.clear(elm);

 if(g.cj.collection.links) {
 coll = g.cj.collection.links;
 menu = d.node("div");
 menu.className = "ui blue fixed top menu";
 menu.onclick = httpGet;

 for(var link of coll) {

 // stuff render=none Cj link elements in HTML.HEAD
 if(isHiddenLink(link)===true) {
 head = d.tags("head")[0];
 lnk = d.link({rel:link.rel,href:link.href,title:link.prompt});
 d.push(lnk,head);

142 | Chapter 5: Collection+JSON Clients

www.it-ebooks.info

http://www.it-ebooks.info/

 continue;
 }

 // render embedded images, if asked
 if(isImage(link)===true) {
 item = d.node("div");
 item.className = "item";
 img = d.image({href:link.href,className:link.rel});
 d.push(img, item);
 d.push(item, menu);
 }
 else {

 a = d.anchor({rel:link.rel,href:link.href,text:link.prompt,
 className: "item"});
 d.push(a, menu);
 }
 }

 d.push(menu, elm);
 }
}

Even though there are quite a few lines of code here, it’s all straight-forward. The
highlights are:

1. After making sure the are Cj links to process, set up some layout to hold them.
2. Now start looping through the links collection
3. If the link elmement should now be rendered, place it in the HTML <head> sec‐

tion of the page
4. If the link element should be rendered as an image, process it properly
5. Otherwise, treat is as a simple <a> tag and add it to the layout.
6. Finally, push the results to the viewable screen.

And here is an example of rendering the Cj links at runtime:

Figure 5-2. Rendering Cj links at runtime

It turns out the cases where the link element is not displayed (callout #3) or the link
is an image (callout #4) takes more code than cases where the link element is just a

The Collection+JSON SPA Client | 143

www.it-ebooks.info

http://www.it-ebooks.info/

navigational element (callout #5). We’ll see some more of the kind of code when we
parse the items collection.

Items
The items() function is the most involved routine in the Cj library. At 125 lines, it is
also the longest. Taht’a because (as we saw when reviewing the items handling in the
Cj Representor, the items element is the most involved of all the Cj document design.
I won’t include all the lines of this routine but will show the key processing in the
routine. You can find the full set of code in the source code repo associated with this
chapter.

I’ll break up the code review for the items() routine into three parts:

• Rendering Cj item editing links
• Rendering Cj item links
• Rendering Cj item data properties

First, the code that handles each item’s Read-Update-Delete links — the last three ele‐
ments of the CRUD pattern. Each Cj item has an href property and, optionally, a
readOnly property. Using this informatoin as a guide, Cj clients are responsible for
rendering support for the Read, Update, and Delete links. You can see this in the code
below. At callout #1, the Read link is created. The Update link is created at #2 and the
Delete link is created at #3. Note the checking of both the readOnly status of the cli‐
ent as well as whether the template can be found in the Cj document. These values
are used to decide which links (Update and Delete) are rendered for the item.

// item link

a1 = d.anchor(
 {
 href:item.href,
 rel:item.rel,
 className:"item link ui basic blue button",
 text:item.rel
 }
);
a1.onclick = httpGet;
d.push(a1,buttons);

// edit link
if(isReadOnly(item)===false && hasTemplate(g.cj.collection)===true) {

 a2 = d.anchor(
 {
 href:item.href,
 rel:"edit",
 className:"item action ui positive button",

144 | Chapter 5: Collection+JSON Clients

www.it-ebooks.info

http://www.it-ebooks.info/

 text:"Edit"
 }
);
 a2.onclick = cjEdit;
 d.push(a2, buttons);
}

// delete link
if(isReadOnly(item)===false) {

 a3 = d.anchor(
 {
 href:item.href,
 className:"item action ui negative button",
 rel:"delete",
 text:"Delete"
 }
);
 a3.onclick = httpDelete;
 d.push(a3,buttons);
}

The next important snippet in the items() routine is the one that handles any item-
level links. So, in the code you can see (at callout #1) if there are links for this item,
each link is checked to see if it should be rendered as an image (callout #2) and, if not,
it can be rendered as a navigational link (callout #3). Finally, after the the links are
processed, the results are added to the item display (callout #4).

if(item.links) {
 for(var link of item.links) {
 // render as images, if asked

 if(isImage(link)===true) {
 p = d.node("p");
 p.className = "ui basic button";
 img = d.image(
 {
 className:"image "+link.rel,
 rel:link.rel,
 href:link.href
 }
);
 d.push(img, p);
 d.push(p,secondary_buttons);
 }
 else {

 a = d.anchor(
 {
 className:"ui basic blue button",
 href:link.href,
 rel:link.rel,
 text:link.prompt
 }

The Collection+JSON SPA Client | 145

www.it-ebooks.info

http://www.it-ebooks.info/

);
 a.onclick = httpGet;
 d.push(a,secondary_buttons);
 }
 }

 d.push(secondary_buttons,segment);
}

The last snippet to review in the items() routine is the one that handles all the actual
data properties of the item. In this client, they are rendered one-by-one as part of a
UI table display. The code (see below) is not very complicated.

for(var data of item.data) {
 if(data.display==="true") {
 tr = d.data_row(
 {
 className:"item "+data.name,
 text:data.prompt+" ",
 value:data.value+" "
 }
);
 d.push(tr,table);
 }
}

That’s all for the items() routine. Next up is the routine that handles the queries
element of the Cj document. And here is example of the generated UI for Cj items:

Figure 5-3. Generated Cj Items

Queries
The queries() routine processes all the elements in the Cj queries collection and
turns them into HTML “GET” FORMS. The code is not very complex but it is a bit
verbose. It takes quite a few lines to generate an HTML FORM! The code our Cj Cli‐
ent uses for generating the UI for Cj queries is below.

// handle query collection
function queries() {

146 | Chapter 5: Collection+JSON Clients

www.it-ebooks.info

http://www.it-ebooks.info/

 var elm, coll;
 var segment;
 var form, fs, header, p, lbl, inp;

 elm = d.find("queries");
 d.clear(elm);

 if(g.cj.collection.queries) {
 coll = g.cj.collection.queries;

 for(var query of coll) {
 segment = d.node("div");
 segment.className = "ui segment";

 form = d.node("form");
 form.action = query.href;
 form.className = query.rel;
 form.method = "get";
 form.onsubmit = httpQuery;
 fs = d.node("div");
 fs.className = "ui form";
 header = d.node("div");
 header.innerHTML = query.prompt + " ";
 header.className = "ui dividing header";
 d.push(header,fs);

 for(var data of query.data) {
 p = d.input({prompt:data.prompt,name:data.name,value:data.value});
 d.push(p,fs);
 }

 p = d.node("p");
 inp = d.node("input");
 inp.type = "submit";
 inp.className = "ui mini submit button";
 d.push(inp,p);
 d.push(p,fs);
 d.push(fs,form);
 d.push(form,segment);

 d.push(segment,elm);
 }
 }
}

The queries routine has just a few interesting points to cover:

1. First, see if there are any queries in this response to process
2. If yes, loop through each of them to build up a query form
3. Create the HTML <form> element and populate it with the proper details
4. Walk through each data element to create the HTML <inputs> that are needed
5. Then add the submit button to the form, and
6. Finally add the resulting markup to the UI for rendering on the page.

The Collection+JSON SPA Client | 147

www.it-ebooks.info

http://www.it-ebooks.info/

That’s how the Cj client handles generating all the ‘safe’ query forms (e.g. HTTP
“GET”). There are a few parts that deal with the HTML layout that are left out here,
but you can see the important aspects of the queries() routine. Here is an example
of the generated query forms in our Cj client app.

Figure 5-4. The Generated Cj Query FORMS

Template
Just as Cj queries describe safe actions (e.g. HTTP GET), the Cj template describes
the unsafe actions (e.g. HTTP POST+ and PUT). The code looks very similar to the
code for generating Cj queries.

// handle template object
function template() {
 var elm, coll;
 var form, fs, header, p, lbl, inp;

 elm = d.find("template");
 d.clear(elm);

 if(hasTemplate(g.cj.collection)===true) {
 coll = g.cj.collection.template.data;

 form = d.node("form");
 form.action = g.cj.collection.href;
 form.method = "post";
 form.className = "add";
 form.onsubmit = httpPost;
 fs = d.node("div");

148 | Chapter 5: Collection+JSON Clients

www.it-ebooks.info

http://www.it-ebooks.info/

 fs.className = "ui form";
 header = d.node("div");
 header.className = "ui dividing header";
 header.innerHTML = g.cj.collection.template.prompt||"Add";
 d.push(header,fs);

 for(var data of coll) {
 p = d.input(
 {
 prompt:data.prompt+" ",
 name:data.name,
 value:data.value,
 required:data.required,
 readOnly:data.readOnly,
 pattern:data.pattern
 }
);
 d.push(p,fs);
 }

 p = d.node("p");
 inp = d.node("input");
 inp.className = "ui positive mini submit button";
 inp.type = "submit";
 d.push(inp,p);
 d.push(p,fs);
 d.push(fs,form);

 d.push(form, elm);
 }
}

Here are the highlights for the template routine:

1. Confirm there is a template element in the loaded Cj document
2. If there is, start building and populating an HTML <form>
3. Using the template’s data properties, create one or more HTML <input> ele‐

ments
4. After all the inputs are created, add an HTML submit button
5. Finally, add the completed HTML FORM to the UI.

You will also notice in the code above that the HTML <form> element is set to use the
POST method. This takes care of the CREATE use-case for Cj template. For the
UPDATE use case, there is a shadow routine in the Cj client called cjEdit(). This is
invoked when the user presses the “Edit” button generated for each item. I won’t
review the code for cjEdit() here (you can check out the source yourself) but will
just mention that it looks almost identicial except for a few changes related to the
HTTP PUT use case.

Here is an example of the Cj template rendered for the CREATE use-case.

The Collection+JSON SPA Client | 149

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 5-5. Generating the Cj CREATE UI

The only code left to review for the Cj Client is the code that handles any error ele‐
ments in the response.

Error
Cj is the only hypermedia design featured in this book that has built-in support for
sending domain-specific error information. The Cj error element is very simple. It
has only four properties: title, message, code, and url. So the client routine for ren‐
dering errors is simple, too.

The code below shows that the Cj client app just echoes the properties of the error
element in Cj responses directly to the screen.

// handle error object
function error() {
 var elm, obj;

 elm = d.find("error");
 d.clear(elm);
 if(g.cj.collection.error) {
 obj = g.cj.collection.error;

 p = d.para({className:"title",text:obj.title});
 d.push(p,elm);

 p = d.para({className:"message",text:obj.message});
 d.push(p,elm);

 p = d.para({className:"code",text:obj.code});
 d.push(p,elm);

150 | Chapter 5: Collection+JSON Clients

www.it-ebooks.info

http://www.it-ebooks.info/

 p = d.para({className:"url",text:obj.url});
 d.push(p,elm);
 }
}

Quick Summary
The Cj client has a number of differences from the HAL and Siren clients we
reviewed earlier in the book. The most significant is the way domain objects are han‐
dled in Cj. Instead of just echoing a set of name-value pairs or even a nested JSON
object graph, Collection+JSON documents only support returning flat lists of items.
Each item represents more than just a domain object’s properties. It also includes
metadata about the domain object (prompt and render information) and a collection
of one or more link elements associated with the domain object.

The way safe and unsafe actions are expressed in Cj is also unique. Instead of leaving
it up to source code (as in HAL) or relying on a general model for all actions (as in
Siren), the Cj design supports two different action elements: the queries and tem
plate elements. Cj queries are for safe actions (e.g. HTML GET) and the template is
for unafe actions (e.g. HTTP POST and PUT).

The other main element in Cj documents is the links colletion and this is very simi‐
lar to the way both HAL and Siren express links, too.

Now that we have a fully-functional Cj general client, let’s introduce some modifica‐
tions to the backend TPS API and see how it deals with backward compatible
changes.

Dealing with Change
In previous chapters covering the JSON (TK), HAL, and Siren SPA Clients, I intro‐
duced various backward-compatible changes to the TPS API in order to exlore the
run-time adaptability of the client. The changes all dealt with one or more changes
the three key aspects Web API clients need to deal with: OBJECTS, ADDRESSES, and
ACTIONS. How the client apps reacted to the changes gave us an indication of their
adaptability using our OAA Challenge.

For the Cj client, I’ll introduce and entirely new domain object (NOTES) along with a
full set of ACTIONS and ADDRESSSES. This level of change represents examples of
all the kinds of changes we’ve introduced to the other SPA clients before. This will test
the Cj Client’s ability to recognize and deal with domain objects and operations that
were introduced long after the initial production release of the API and client imple‐
mentations.

Dealing with Change | 151

www.it-ebooks.info

http://www.it-ebooks.info/

Adding the NOTE Object to the TPS API
Let’s assume that the TPS team decides to add support for attaching comments or
NOTES to TASK records in the TPS API. That means defining a NOTE object’s fields
and adding support for the basic CRUD operations on NOTE objects along with
some other NOTE-specific actions like filters, etc.

The source code for the updated Cj Representor with NOTE sup‐
port can be found in the associated github repo here: https://
github.com/RWCBook/cj-client-note. A running version of the app
described in this chapter can be found here: http://rwcbook13.hero
kuapp.com/files/cj.client.html (TK: check URLs)

In this section, I’ll review the API design elements (internal NOTE object and public
API), the resulting WeSTL document, and take a look at a bit of the server code.
Then, after completing the backend changes, we’ll fire up the Cj client and see what
happens.

The NOTE API Design
Our NOTE object will have a small set of fields, support the basdic CRUD operations,
a couple filters, and a custom NoteAssignTask operation. The table below shows the
NOTE object properties:

Table 5-1. Note Object Properties

Property Type Status Default

id string required none

title string required none

text string optional none

assignedTask taskID required none

Along with the Create-Read-Update-Delete (CRUD) asctions, we’ll need a couple fil‐
ters (NoteListByTitle and NoteListByText) that allows users to enter partial strings
and find all the NOTE records that contain that string. We’ll also add a special opera‐
tion to assign a NOTE to a TASK (NoteAssignTask) that takes to id values (a NOTE
id and a TASK id). The table below lists all the operations, arguments, and HTTP
protocol deatils.

152 | Chapter 5: Collection+JSON Clients

www.it-ebooks.info

https://github.com/RWCBook/cj-client-note
https://github.com/RWCBook/cj-client-note
http://rwcbook13.herokuapp.com/files/cj.client.html
http://rwcbook13.herokuapp.com/files/cj.client.html
http://www.it-ebooks.info/

Table 5-2. TPS Note Object API

Operation URL Method Returns Inputs

NoteList /note/ GET NoteList none

NoteAdd /note/ POST NoteList id,

title,

text,

asssignedTask

NoteItem /note/{id} GET NoteItem none

NoteUpdate /note/{id} PUT NoteList id,

title,

text,

asssignedTask

NoteRemove /note/{id} DELETE NoteList none

NoteAssignTask /note/assign/{id} POST NoteList id,

assignedTask

NoteListByTitle /note/ GET NoteList title

NoteListByText /note/ GET NoteList text

That’s all we need on the design side. Let’s look at how we’ll turn this design into a
working API in our TPS service.

The NOTE API Service Implementation
I won’t go into the details of the internal code (data and object manipulation) for
implementing the NOTES object support in the TPS API. However, it is worth point‐
ing out a few things on the interface side since it affects how we’ll set up the Cj
responses sent to the existing client.

The first thing to add is the component code that defines the object described in
Table 9.1 above. This code also vcalidates inputs and enforces relationship rules (e.g.
making sure users don’t assign NOTE records to non-existent TASK records). In the
TPS API service, the NOTE object definition looks like this:

 props = ["id","title","text","assignedTask","dateCreated","dateUpdated"];
 elm = 'note';

 // shared profile info for this object
 profile = {
 "id" : {"prompt" : "ID", "display" : true},

Dealing with Change | 153

www.it-ebooks.info

http://www.it-ebooks.info/

 "title" : {"prompt" : "Title", "display" : true},
 "text" : {"prompt" : "Text", "display" : true},
 "assignedTask" : {"prompt" : "Assigned Task", "display" : true},
 "dateCreated" : {"prompt" : "Created", "display" : false},
 "dateUpdated" : {"prompt" : "Updated", "display" : false}
 };

Notice that the props array (callout #1) defines valid fields for a NOTE and the pro
file object (callout #2) contains the rules for displaying objects to users (e.g. the
prompt and display flags).

Below is the addTask routine for the note-component.js server-side code. It shows
how the component builds up a new NOTE record to store (callout #1) and validates
the inputs (#2) including checking for the existence of the supplied assignedTask ID
(callout #3). Then, as long as there are no errors found, the code sends the new
NOTE record off for storage (#4).

function addNote(elm, note, props) {
 var rtn, item, error;

 error = "";

 item = {}
 item.title = (note.title||"");
 item.text = (note.text||"");
 item.assignedTask = (note.assignedTask||"");

 if(item.title === "") {
 error += "Missing Title ";
 }
 if(item.assignedTask==="") {
 error += "Missing Assigned Task ";
 }

 if(component.task('exists', item.assignedTask)===false) {
 error += "Task ID not found. ";
 }

 if(error.length!==0) {
 rtn = utils.exception(error);
 }
 else {

 storage(elm, 'add', utils.setProps(item,props));
 }

 return rtn;
}

That’s enough of the internals. Now let’s look at the interface code — the WeSTL
entries that define the transitions for manipulating NOTE objects, and the resource
code that handles the HTTP protocol requests exposed via the API.

154 | Chapter 5: Collection+JSON Clients

www.it-ebooks.info

http://www.it-ebooks.info/

Here are some of the transition descriptions for NOTE objects. I’ve included the note
FormAdd transition that will populate the Cj template (callout #1) and the two transi‐
tions for the “Assign Task” action: the one that offers a link to the form (callout #2)
and the template for making the assignement (callout #2).

 // add task
 trans.push({
 name : "noteFormAdd",
 type : "unsafe",
 action : "append",
 kind : "note",
 target : "list add hal siren cj-template",
 prompt : "Add Note",
 inputs : [
 {name : "title", prompt : "Title", required : true},
 {name : "assignedTask", prompt : "Assigned Task", required : true},
 {name : "text", prompt : "Text"}
]
 });

 ...

 trans.push({
 name : "noteAssignLink",
 type : "safe",
 action : "read",
 kind : "note",
 target : "item cj read",
 prompt : "Assign Task",
 });

 trans.push({
 name : "noteAssignForm",
 type : "unsafe",
 action : "append",
 kind : "note",
 target : "item assign edit post form hal siren cj-template",
 prompt : "Assign Task",
 inputs : [
 {name: "id", prompt:"ID", readOnly:true, required:true},
 {name: "assignedTask", prompt:"Task ID", value:"", required : true}
]
 });

Because the Cj media type design relies heavily on the CRUD pattern, unsafe opera‐
tions that don’t easily fall into the CRUD model (in this case, the noteAssignForm
opertation) need to be handled differently. In Cj, these non-standard CRUD actions
are offered as templates and executed with an HTTP POST — the way you’d create a
new object in a standard CRUD pattern.

Dealing with Change | 155

www.it-ebooks.info

http://www.it-ebooks.info/

To support this, I need two transitions. One that returns the “assign template” (note
AssignLink) and the other that accepts the POST call to commit the assign argu‐
ments to storage (noteAssingForm). Since WeSTL doesn’t supply URLs, the source
code (in the /connectors/note.js file on the server) does that at runtime. Here’s
what that snippet of code looks like:

// add the item-level link
wstl.append({name:"noteAssignLink",href:"/note/assign/{id}",
 rel:["edit-form","/rels/noteAssignTask"],root:root},coll);

// add the assign-page template
wstl.append({name:"noteFormAdd",href:"/note/",
 rel:["create-form","/rels/noteAdd"],root:root},coll);

Finally, I’ll need to account for this when handling HTTP requests, too. Here is the
code that responds to the HTTP GET for the “assign page” (e.g. /note/assign/
1qw2w3e)

case 'GET':
 if(flag===false && parts[1]==="assign" && parts[2]) {
 flag=true;
 sendAssignPage(req, res, respond, parts[2]);
 }

And here’s the snippet of code that responds to the HTTP POST request that commits
the assignment:

case 'POST':
 if(parts[1] && parts[1].indexOf('?')===-1) {
 switch(parts[1].toLowerCase()) {
 case "assign":
 assignTask(req, res, respond, parts[2]);
 break;
 }
 }

There is more in the server-side code (e.g adding the page-level link to the new
NOTES API, etc.) that you can check out yourself. The point here is that Cj forces
API designers to explicitly account for the non-CRUD unsafe actions (via POST) right
up front. This is a bit more work for API designers (well, you’d have to do it eventu‐
ally anyway) but it makes support in the Cj client much easier. In fact, that support is
already there.

So let’s see what happens when we fire up our existing, unchanged Cj client against
this updated TPS API.

Testing the NOTE API With the Exsiting Cj Client
In a real-life scenario, the TPS API would be updated into production without prior
warning to all the exasiting Cj clients. Then, at some point one of the client might

156 | Chapter 5: Collection+JSON Clients

www.it-ebooks.info

http://www.it-ebooks.info/

make an initial request to the TPS API, just as in previous days and automatically see
the new “Notes” option at the top of the page (see image below).

Figure 5-6. New NOTES option in the Cj Client

When the user clicks on the “Notes” link, the fully-populated interface comes up with
all the display and input constraints enforced. Along with the expected “Read”, “Edit”,
and “Delete” buttons for each item plus the “Add Note” form, users will also see (in
the image below) the special “Assign Task” link that appears for each NOTE in the
list.

Figure 5-7. The NOTES Page in the Cj Client

Finally, clicking on the “Assign Task” button will bring up the screen that prompts
users to enter the id value of the TASK to which this note should be attached (see
image below).

Dealing with Change | 157

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 5-8. Assigning a Note to a Task

So, the existing Cj client was able to support all the new API functionality (the new
OBJECT, ADDRESSES, and ACTIONS) without any new coding. At this point the
TPS Web API team has quite a bit of freedom to modify the existing production API.
As long as the changes are backward-compatible, not only will the Cj client not break
when new changes appear, the new changes will be fully supported (not just safely
ignored) for now and into the future.

But things are not perfect w/ the Cj client. As you might have noticed that last couple
screens, entering the text of a note is a problem — the text box is too small. It should
be rendered as an HTML <textarea> control to support longer text entry and even
scroll bars. Even more problematic is the “Assign Task” data entry. There users are
expected to supply two rather opaque record identifiers (NoteID and TaskID) in
order to complete the “Assign Task” action. That’s not very user-friendly and it is
likely to be rejected by any team responsible for building quality user experiences.

To fix this short-coming, we’ll need to extend the Cj design to do a better job of
describing (and supporting) more user-friendly input experiences. There are lots of
options for improvement but I’ll just focuse on one of them for now: supporting a
dropdown or suggested list of possible values for input.

Extending Collection+JSON
Cj has powerful support for passing metadata on links (ADDRESSES), forms
(ACTIONS), and domain-objects (OBJECTS). However, it has weak support for pass‐
ing metadata about user inputs. The ability to indicate input properties such as
required, readOnly, and pattern (all directly from HTML5) is a start, but more is
needed. Swiber’s Siren (TK ref?), for example, has much stronger support for input
metadata.

The good news is that Cj has a clear option for creating extensions to fill in gaps in
the design. And that’s what I’ll do here. This section outlines an extension for sup‐
porting a type attribute for Cj data elements (ala HTML5’s type attribute) and a sug
gest attribute to provide input metadata similar to that of the HTML <select> input
control.

158 | Chapter 5: Collection+JSON Clients

www.it-ebooks.info

http://www.it-ebooks.info/

The source code for the updated Cj Representor with NOTE sup‐
port can be found in the associated github repo here: https://
github.com/RWCBook/cj-client-types. A running version of the app
described in this chapter can be found here: http://rwcbook14.hero
kuapp.com/files/cj.client.html (TK: check URLs)

These extensions will improve Cj client apps’ ability to provide a solid user experi‐
ence.

Supporting Improved Input Types
Adding support for HTML5-style input types (e.g. email, number, url, etc.) is a pretty
simple extension for Cj. It’s just a matter of adding the type property to the Cj output
and honoring it on the client side. There are also a series of associated properties like
min, max, size, maxlength, etc. that should also be supported.

Below is an example of what extended type support in Cj would look like in the Cj
representation. Note the use of the pattern (callout #1) and "type":"email" (#2).

"template": {
 "prompt": "Add User",
 "rel": "create-form userAdd create-form",00
 "data": [
 {"name": "nick","value": "","prompt": "Nickname","type": "text",

 "required": "true","pattern": "[a-zA-Z0-9]+"},

 {"name": "email","value": "","prompt": "Email","type": "email"},
 {"name": "name","value": "","prompt": "Full Name","type": "text",
 "required": "true"},
 {"name": "password","value": "","prompt": "Password","type":"text",

 "required": "true","pattern": "[a-zA-Z0-9!@#$%^&*-]+"}
]
}

Another handy HTML UI element is the <textarea> element. Adding support for
textarea in Cj is also pretty simple. The Cj template would look like this (see callout
#1):

"template": {
 "prompt": "Add Note",
 "rel": "create-form //localhost:8181/rels/noteAdd",
 "data": [
 {"name": "title","value": "","prompt": "Title",
 "type": "text","required": "true"},
 {"name": "assignedTask","value": "","prompt": "Assigned Task",
 "type": "text","required": "true"},
 {"name": "text","value": "","prompt": "Text",

 "type": "area","cols": 40,"rows": 5}
]
}

Extending Collection+JSON | 159

www.it-ebooks.info

https://github.com/RWCBook/cj-client-types
https://github.com/RWCBook/cj-client-types
http://rwcbook14.herokuapp.com/files/cj.client.html
http://rwcbook14.herokuapp.com/files/cj.client.html
http://www.it-ebooks.info/

And here’s how the CJ client screen looks w/ support for the area input type added:

Figure 5-9. Adding Cj Support for Textarea Input

So, adding support for most HTML5-style inputs is rather easy. But there are a couple
HTML5-style inputs that take a bit more effort and one of them is badly needed for
the TPS user experience — the <select> or ‘dropdown’ list.

The suggest Object
Supporting HTML-style dropdown lists takes a bit of planning. I’ll need to make
modifications to the Cj document design, Representor, and the Client library. I won’t
go through a lot of detail here — just the highlights.

Updating the Cj Design

First, we’ll need a way to communicate the dropdown input within the Cj data ele‐
ments. The design I chose allows for two types of implementation: ‘direct’ content,
and ‘related’ content. I’ll explain the differences as we go along.

Here is a sample suggest element that uses the ‘direct’ content approach:

data :
 [
 {
 "name": "completeFlag",
 "value": "false",
 "prompt": "Complete",

 "type": "select",

 "suggest": [
 {"value": "false", "text": "No"},
 {"value": "true", "text": "Yes"}
]
 }
]

160 | Chapter 5: Collection+JSON Clients

www.it-ebooks.info

http://www.it-ebooks.info/

At callout #1, the new type attribute is set to "select" and, at callout #2, the suggest
element is an array with an object that holds both the value and the text for HTML
<select> elements.

The other type of suggest implementation I want to support is what I call the ‘related’
model. It uses related data in the response as content for the dropdown list. That
means I need to add a new element to the Cj document’s root: related. This Cj root
element is a named object with one or more named JSON arrays that hold content for
a dropdown list. Here’s what that looks like (see callout #1):

{
 "collection": {
 "version": "1.0",
 "href": "//localhost:8181/task/assign/1l9fz7bhaho",
 "links": [...],
 "items": [...],
 "queries": [...],
 "template": {...},

 "related": {
 "userlist": [
 {"nick": "alice"},
 {"nick": "bob"},
 {"nick": "carol"},
 {"nick": "fred"},
 {"nick": "mamund"},
 {"nick": "mook"},
 {"nick": "ted"}
]
 }
 }
}

And here’s the matching implementation for the suggest attribute (#1) for Cj data
elements:

data: [
 {
 "name": "assignedUser",
 "value": "mamund",
 "prompt": "User Nickname",
 "type": "select",
 "required": "true",

 "suggest": {"related": "userlist","value": "nick","text": "nick"}
 }
]

Now, Cj client applications can find the related data in the response (by the value of
related) and use the property names listed in the suggest element to populate the
list.

Extending Collection+JSON | 161

www.it-ebooks.info

http://www.it-ebooks.info/

Updating the Cj Representor

We need to include the related property in the output of the Cj Representor. That’s
pretty easy. We just create a small function to pull any related content into the
response (callout #1) and add that to the top-level routine that builds up the Cj
response document (callout #2):

// handle any related content in the response
function getRelated(obj) {
 var rtn;

 if(obj.related) {
 rtn = obj.related;
 }
 else {
 rtn = {};
 }
 return rtn;
}

...

// building the cj response document
rtn.collection.title = getTitle(object[o]);
rtn.collection.content = getContent(object[o]);
rtn.collection.links = getLinks(object[o].actions);
rtn.collection.items = getItems(object[o],root);
rtn.collection.queries = getQueries(object[o].actions);
rtn.collection.template = getTemplate(object[o].actions);

rtn.collection.related = getRelated(object[o]);

Updating the Cj Client library
The Cj client library has a handful of things to deal with now including:

• Recognizing the new suggest attribute in responses
• Locating any possible related content in the responses
• Parsing the suggest element into a valid <select> element in the UI
• Processing the value of the <select> element and including it in the POST and

PUT actions

Most of this work will happen in my dom-help.js routine — that’s where the request
to creat an input element in the UI takes place. Here is a snippet of code I added to
the input(args,related) routine:

....

if(args.type==="select" || args.suggest) {
 inp = node("select");
 inp.value = args.value.toString()||"";

162 | Chapter 5: Collection+JSON Clients

www.it-ebooks.info

http://www.it-ebooks.info/

 inp.className = "ui dropdown ";

 if(Array.isArray(args.suggest)) {
 for(var ch of args.suggest) {
 opt = option(ch);
 push(opt,inp);
 }
 }

 if(related) {
 lst = related[args.suggest.related];

 if(Array.isArray(lst)) {
 val = args.suggest.value;
 txt = args.suggest.text;

 for(var ch of lst) {
 opt = option({text:ch[txt],value:ch[val]});
 push(opt,inp);
 }
 }
 }
}
....

In the code above:

1. See if this is a suggest control
2. If there is an array of values, use that to build the <option> elements for the

HTML <select> control
3. Check to see if a pointer to the related content in the response was passed
4. If it was, and it returns a valid array of data,
5. Use that content to build up the <option> elements.

There are some additional client-side library changes to manage the details and col‐
lect and send selected values back to the service. You can check out the source code
for details.

Once all this is in place, the UI for screens like “Assign Task” look much more invit‐
ing:

Figure 5-10. Adding Dropdown Support to Cj

Extending Collection+JSON | 163

www.it-ebooks.info

http://www.it-ebooks.info/

Now, with the Suggest extension and added support for improved input metadata, Cj
offers not only fully-functional support for adding new OBJECTS to the backend
API, but it also has better user interface support. It is worth pointing out that most of
the input support I added to Cj as extensions already exsits as part of the design for
Siren (TK).

Reader Challenge

My suggest implementation has two modes: ‘direct’ and ‘related’.
There is at least one more mode that I didn’t implement that I’d
really like to see: ‘web’ mode. In Web mode, the suggest.related
value is a valid URL pointing to an API response that returns the
list of choices. It could be used to create a simple drop down or it
could be used to implement a key-stroke experience that performs
a search on each key-press and returns suggested results. I’ll leave
the details to my intrepid readers to work out on their own — and
submit as an update to the online github repo.

Summary
In previous chapters covering the JSON (TK), HAL, and Siren SPA Clients, I intro‐
duced various backward-compatible changes to the TPS API in order to exlore the
run-time adaptability of the client. The changes all dealt with one or more changes
the three key aspects Web API clients need to deal with: OBJECTS, ADDRESSES, and
ACTIONS. How the client apps reacted to the changes gave us an indication of their
adaptability using our OAA Challenge.

Here’s a quick summary of our experience so far:

JSON Client
Changes to URLs, adding fields, or actions all were ignored by the client app.
That gave us no “wins” on the OAA Challenge.

HAL Client
Changes to URLs did not adversely affect the client. However, changes to domain
objects and actions were ignored. That’s 1 “win” for HAL: ADDRESSES.

Siren Client
Changes to URLs and actions were all recognized and supported in the Siren cli‐
ent. However, changes to domain objects were not picked up by the client. That’s
2 “wins” for Siren: ADDRESSES and ACTIONS.

Cj Client
As we saw in this chapter, adding an entirely new domain object (NOTES) was
automatically picked-up by the Cj client. All the URLs, fields, and operations

164 | Chapter 5: Collection+JSON Clients

www.it-ebooks.info

http://www.it-ebooks.info/

appeared in the UI w/o the need to make any changes to the client code. That
gives Cj all 3 “wins” in the OBJECTS-ADDRESSES-ACTIONS Challenge.

Of couse, along the way, each client was enchanced through the application of exten‐
sions (HAL-FORMS, SIREN-SOP, and Cj-Suggest). And there are other possible ways
in which to improve both the adaptability and the user experience of all of the client
implementations reviwed in the book. But the Collection+JSON design offers clients
the widest possible range of adaptability for the kinds of API changes that are most
commonly experienced by API client apps.

The Relationship between Data and Metadata

And that brings up an important pattern that has run throughout
the examples in the book: the relationship between metadata and
adaptability. As you scan the message models used for our client
examples you’ll find that each one, in order, has provided increased
levels of metadata in the API responses. From the plain JSON
responses that contain no metadata on up the the Cj responses
which (sometimes) contain more metadata than ‘data.’ And, with
each increase in metadata, the client libraries gain more ability to
adapt to changes in the backend API. It follows that, if you want to
improve the adaptability of your client applications, you need to
focus on the metadata shared in responses.

It should be noted that not all production implementations need to support adapta‐
biltiy on all three of the axes featured here. The application of HAL, Siren, Cj (or
other media types) makes sense when they help solve real problems. It it not at all
likely that one format is appropriate for all cases and it is up to API designers and
implementers to select the formats that provide the best feature match for the
expected use-cases.

Having said that, there is one more challenge worth exploring: the challenge of imple‐
menting a single SPA application that supports more than one hypermedia format —
and can automatically switch between formats at runtime based on the service
response.

And that’s the challenge we’ll take up in the next — and final — chapter of the book.

Bob and Carol
“Well, Bob, Collection+JSON turned out to be a
very interesting hypermedia type.”

Summary | 165

www.it-ebooks.info

http://www.it-ebooks.info/

“Yes, it did, Carol. My team tells me they had no
trouble putting together the representor for it, too.

Even with the added metadata in the responses.”

“Right, and that added metadata really helped our
client team build a solid general client app. The Cj
app seems much more adaptable to backend API

changes than any of the others we’ve tried so far.”

“That’s encouraging, Carol. Although I will say I
heard some on the API design side saying they

were finding some API operations were a bit more
challenging to implement due to Cj’s CRUD support.”

“Yes, we heard that, too, Bob. Turns out operations
like “Assign user” in our TPS API don’t map easily
to the simple CRUD pattern.”

“Yep, but our API team was able to provide item-
level links that point to responses with POST tem‐

plates to make it all work.”

“And by doing that, our client app was able to sup‐
port the new NOTES functionality without any
client-side updates. That was great.”

“Yep. The API team was really pleased when they
realised that Cj gives them the ability to introduce

that level of new functionality and have it automat‐
ically appear in the client app.”

“Of course, we needed to add some extensions to
improve the human-drive UI. Cj was missing sev‐
eral things that we had in Siren, for example. The

good news is that adding UI extensions seems really easy in
Cj.”

“Well, Carol. I think this was the most successful
general hypermedia client app we’ve built so far.”

166 | Chapter 5: Collection+JSON Clients

www.it-ebooks.info

http://www.it-ebooks.info/

“I agree, Bob. Kind of makes me wonder if there
are any more challenges we need to address.”

“Actually, I think there is. My server side team has
been thinking about implementing a Microservice-

style backend and that might cause us some trou‐
ble for these hypermedia clients.”

“You think so?”

“Well, I need to check back with my team. Let’s
meet again tomorrow to discuss it, OK?”

“OK, Bob. See you tomorrow.”

References
1. The most up-to-date specification docs for Cj can be found at http://amund

sen.com/media-types/collection
2. You’ll find various Cj examples and extensions in the online github repository at

https://github.com/collection-json
3. The Google discussion group for Cj is archived at https://groups.google.com/

forum/?fromgroups=#!forum/collectionjson
4. The HTML <input> element has quite a few options. Check out the docs online

at the W3C website.
5. The specification for the HTML <textarea> element can be found at the W3C

web site.

Images Credits

• Diogo Lucas: Figure 1

References | 167

www.it-ebooks.info

http://amundsen.com/media-types/collection
http://amundsen.com/media-types/collection
https://github.com/collection-json
https://groups.google.com/forum/?fromgroups=#!forum/collectionjson
https://groups.google.com/forum/?fromgroups=#!forum/collectionjson
https://www.w3.org/TR/2011/WD-html5-author-20110705/the-input-element.html#the-input-element
https://www.w3.org/TR/2011/WD-html5-author-20110705/the-textarea-element.html
https://www.w3.org/TR/2011/WD-html5-author-20110705/the-textarea-element.html
http://www.it-ebooks.info/

	Cover
	Copyright
	Table of Contents
	Chapter 1. Our HTML Roots and Simple Web APIs
	The Task Processing System (TPS) Web App
	HTML from the Server
	Common Web Browser as the Client
	Observations

	The Task Services Web API
	Web API Common Practice
	Designing the TPS Web API
	Implementing TPS Web API
	Observations

	Summary
	References

	Chapter 2. JSON Clients
	The JSON Web API Client
	Objects
	Addresses
	Actions
	Quick Summary

	The JSON SPA Client
	The HTML Container
	The Top-Level Parse Loop
	Objects, Addresses, and Actions

	Dealing with Change
	Adding a Field and Filter

	Coding a New Client
	Summary
	References

	Chapter 3. The Representor Pattern
	XML or JSON: Pick a Side!
	The New Crop of Hypermedia Formats
	The Fallacy of The Right One
	Re-Framing the Problem

	The Representor Pattern
	Separating Format from Functionality
	The Selection Algorithm
	A Solid STRATEGY
	The TRANSFORM VIEW

	A Server-Side Model
	Handling the HTTP Accept Header
	Implementing the STRATEGY Pattern
	General Representor Modules
	The WeSTL Format
	A Sample Representor

	Summary
	References

	Chapter 4. Versioning and the Web
	Versioning for the Internet
	TCP/IP’s Robustness Principle
	HTTP’s MUST IGNORE
	HTML’s Backward Compatibility

	Guidelines for Non-Breaking Changes
	API Designers
	Server Implementors
	Client Implementors

	Summary
	References

	Chapter 5. Collection+JSON Clients
	The Collection+JSON Format
	Links
	Items
	Queries
	Template
	Error
	A Quick Summary

	The Collection+JSON Representor
	The Top-Level Processing Loop
	Links
	Items
	Queries
	Template
	Error

	The Collection+JSON SPA Client
	The HTML Container
	The Top-Level Parse Loop
	Links
	Items
	Queries
	Template
	Error
	Quick Summary

	Dealing with Change
	Adding the NOTE Object to the TPS API

	Extending Collection+JSON
	Supporting Improved Input Types
	The suggest Object

	Summary
	References

